Schubert Varieties and Free Braidedness

被引:0
|
作者
R.M. Green
J. Losonczy
机构
[1] Department of Mathematics,
[2] University of Colorado,undefined
[3] Campus Box 395,undefined
[4] Boulder,undefined
[5] CO 80309-0395,undefined
[6] Department of Mathematics,undefined
[7] Long Island University,undefined
[8] 720 Northern Boulevard,undefined
[9] Brookville,undefined
[10] NY 11548-1319,undefined
来源
Transformation Groups | 2004年 / 9卷
关键词
Topological Group; Weyl Group; Schubert Variety; Smooth Schubert Variety; Braided Element;
D O I
暂无
中图分类号
学科分类号
摘要
We give a simple necessary and sufficient condition for a Schubert variety Xw to be smooth when w is a freely braided element of a simply laced Weyl group; such elements were introduced by the authors in a previous work. This generalizes in one direction a result of Fan concerning varieties indexed by short-braid avoiding elements. We also derive generating functions for the freely braided elements that index smooth Schubert varieties. All results are stated and proved only for the simply laced case.
引用
收藏
页码:327 / 336
页数:9
相关论文
共 50 条
  • [21] Singularities of Affine Schubert Varieties
    Kuttler, Jochen
    Lakshmibai, Venkatramani
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [22] COMINUSCULE POINTS AND SCHUBERT VARIETIES
    Graham, William
    Kreiman, Victor
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) : 2519 - 2548
  • [23] Total positivity in Schubert varieties
    Berenstein, A
    Zelevinsky, A
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (01) : 128 - 166
  • [24] Schubert unions in Grassmann varieties
    Hansen, Johan P.
    Johnsen, Trygve
    Ranestad, Kristian
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) : 738 - 750
  • [25] Toric degenerations of Schubert varieties
    Caldero P.
    Transformation Groups, 2002, 7 (1) : 51 - 60
  • [26] On tangent spaces to Schubert varieties
    Lakshmibai, V
    JOURNAL OF ALGEBRA, 2000, 230 (01) : 222 - 244
  • [27] On Tangent Cones of Schubert Varieties
    Fuchs D.
    Kirillov A.
    Morier-Genoud S.
    Ovsienko V.
    Arnold Mathematical Journal, 2017, 3 (4) : 451 - 482
  • [28] Geometric crystals on Schubert varieties
    Nakashima, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (02) : 197 - 225
  • [29] Elliptic classes of Schubert varieties
    Shrawan Kumar
    Richárd Rimányi
    Andrzej Weber
    Mathematische Annalen, 2020, 378 : 703 - 728
  • [30] UNIVERSAL GRAPH SCHUBERT VARIETIES
    BRENDAN PAWLOWSKI
    Transformation Groups, 2021, 26 : 1417 - 1461