On the Transformations of the Sixth Painlevé Equation

被引:0
|
作者
Valery I Gromak
Galina Filipuk
机构
[1] Belarusian State University,Department of differential equations
关键词
D O I
10.2991/jnmp.2003.10.s2.9
中图分类号
学科分类号
摘要
In this paper we investigate relations between different transformations of the solutions of the sixth Painlevé equation. We obtain nonlinear superposition formulas linking solutions by means of the Bäcklund transformation. Algebraic solutions are also studied with the help of the Bäcklund transformation.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 50 条
  • [31] On the Lax pairs of the continuous and discrete sixth Painlevé equations
    Runliang Lin
    Robert Conte
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 107 - 118
  • [32] Discrete dressing transformations and painlevé equations
    Grammaticos, B.
    Papageorgiou, V.
    Ramani, A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235 (05): : 475 - 479
  • [33] Dynamics of the Painlevé-Ince Equation
    Jaume Llibre
    Results in Mathematics, 2023, 78
  • [34] On the solution of a Painlevé III equation
    Widom H.
    Mathematical Physics, Analysis and Geometry, 2000, 3 (4) : 375 - 384
  • [35] Backlund transformations of the sixth Painleve equation in terms of Riemann-Hilbert correspondence
    Inaba, M
    Iwasaki, K
    Saito, MH
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (01) : 1 - 30
  • [36] Schlesinger Transformations for Algebraic Painlevé VI Solutions
    Vidunas R.
    Kitaev A.V.
    Journal of Mathematical Sciences, 2021, 257 (4) : 495 - 517
  • [37] Is my ODE a Painlevé equation in disguise?
    Hietarinta J.
    Dryuma V.
    Journal of Nonlinear Mathematical Physics, 2002, 9 (Suppl 1) : 67 - 74
  • [38] Quadratic transformations for the third and fifth Painlevé equations
    Kitaev A.V.
    Journal of Mathematical Sciences, 2006, 136 (1) : 3586 - 3595
  • [39] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [40] Painlevé integrability of the supersymmetric Ito equation
    岑锋杰
    赵燕丹
    房霜韵
    孟欢
    俞军
    Chinese Physics B, 2019, (09) : 93 - 96