On the solution of a Painlevé III equation

被引:0
|
作者
Widom H. [1 ]
机构
[1] Department of Mathematics, University of California, Santa Cruz
基金
美国国家科学基金会;
关键词
Fredholm determinant; Painlevé; equation; Sinh-Gordon equation;
D O I
10.1023/A:1011471211346
中图分类号
学科分类号
摘要
In a 1977 paper of B. M. McCoy, C. A. Tracy and T. T. Wu there appeared for the first time the solution of a Painleve equation in terms of Fredholm determinants of integral operators. Their proof is quite complicated. We present here one which is more straightforward and makes use of recent work of the author and C. A. Tracy. © 2001 Kluwer Academic Publishers.
引用
收藏
页码:375 / 384
页数:9
相关论文
共 50 条
  • [1] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [2] Numerical solution of the Painlevé V equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 44 - 56
  • [3] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [4] Numerical solution of the Painlevé IV equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2012, 52 : 1565 - 1573
  • [5] Numerical solution of the Painlev, V equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (01) : 44 - 56
  • [6] Solution of the equivalence problem for the Painlevé IV equation
    V. V. Kartak
    Theoretical and Mathematical Physics, 2012, 173 : 1541 - 1564
  • [7] Numerical solution of the Cauchy problem for Painlev, III
    Abramov, A. A.
    Yukhno, L. F.
    DIFFERENTIAL EQUATIONS, 2012, 48 (07) : 909 - 918
  • [8] Numerical solution of the Cauchy problem for Painlevé III
    A. A. Abramov
    L. F. Yukhno
    Differential Equations, 2012, 48 : 909 - 918
  • [9] Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics
    Thomas Bothner
    Peter D. Miller
    Constructive Approximation, 2020, 51 : 123 - 224
  • [10] On the algebraic solutions of the Painlev?-III (D7) equation
    Buckingham, R. J.
    Miller, P. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 441