On the algebraic solutions of the Painlev?-III (D7) equation

被引:4
|
作者
Buckingham, R. J. [1 ]
Miller, P. D. [2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, POB 210025, Cincinnati, OH 45221 USA
[2] Univ Michigan, Dept Math, East Hall,530 Church St, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Painlev?-III(D7) equation; Isomonodromy method; Algebraic solutions; LARGE-DEGREE ASYMPTOTICS; POLYNOMIALS;
D O I
10.1016/j.physd.2022.133493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The D7 degeneration of the Painleve-III equation has solutions that are rational functions of x1/3 for certain parameter values. We apply the isomonodromy method to obtain a Riemann-Hilbert representation of these solutions. We demonstrate the utility of this representation by analyzing rigorously the behavior of the solutions in the large parameter limit.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条