On the solution of a Painlevé III equation

被引:0
|
作者
Widom H. [1 ]
机构
[1] Department of Mathematics, University of California, Santa Cruz
基金
美国国家科学基金会;
关键词
Fredholm determinant; Painlevé; equation; Sinh-Gordon equation;
D O I
10.1023/A:1011471211346
中图分类号
学科分类号
摘要
In a 1977 paper of B. M. McCoy, C. A. Tracy and T. T. Wu there appeared for the first time the solution of a Painleve equation in terms of Fredholm determinants of integral operators. Their proof is quite complicated. We present here one which is more straightforward and makes use of recent work of the author and C. A. Tracy. © 2001 Kluwer Academic Publishers.
引用
收藏
页码:375 / 384
页数:9
相关论文
共 50 条
  • [41] Properties of the series solution for Painlevé I
    A. N. W. Hone
    O. Ragnisco
    F. Zullo
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 85 - 100
  • [42] Optimal system, similarity solution and Painlevé test on generalized modified Camassa-Holm equation
    K. Krishnakumar
    A. Durga Devi
    V. Srinivasan
    P. G. L. Leach
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 547 - 557
  • [43] A method for the numerical solution of the Painlev, equations
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (05) : 540 - 563
  • [44] A τ-function solution of the sixth painlevé transcendent
    Yu. V. Brezhnev
    Theoretical and Mathematical Physics, 2009, 161 : 1616 - 1633
  • [45] A method for the numerical solution of the Painlevé equations
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 540 - 563
  • [46] Local expansions of solutions to the fifth Painlevé equation
    A. D. Bruno
    A. V. Parusnikova
    Doklady Mathematics, 2011, 83 : 348 - 352
  • [47] Tronquée Solutions of the Painlevé Equation PI
    O. Costin
    R. D. Costin
    M. Huang
    Constructive Approximation, 2015, 41 : 467 - 494
  • [48] On a q-Difference Painlevé III Equation: I. Derivation, Symmetry and Riccati Type Solutions
    Kenji Kajiwara
    Kinji Kimura
    Journal of Nonlinear Mathematical Physics, 2003, 10 : 86 - 102
  • [49] Painlevé–Gullstrand coordinates for the Kerr solution
    José Natário
    General Relativity and Gravitation, 2009, 41 : 2579 - 2586
  • [50] An Ultradiscrete Matrix Version of the Fourth Painlevé Equation
    Chris M. Field
    Chris M. Ormerod
    Advances in Difference Equations, 2007