Tree Modules and Counting Polynomials

被引:0
|
作者
Ryan Kinser
机构
[1] Northeastern University,Department of Mathematics
来源
关键词
Quivers; Tree modules; Counting polynomials; 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
We give a formula for counting tree modules for the quiver Sg with g loops and one vertex in terms of tree modules on its universal cover. This formula, along with work of Helleloid and Rodriguez-Villegas, is used to show that the number of d-dimensional tree modules for Sg is polynomial in g with the same degree and leading coefficient as the counting polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{S_g}(d, q)$\end{document} for absolutely indecomposables over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_q$\end{document}, evaluated at q = 1.
引用
收藏
页码:1333 / 1347
页数:14
相关论文
共 50 条
  • [31] Zeros of graph-counting polynomials
    Ruelle, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) : 43 - 56
  • [32] Power counting energy flow polynomials
    Pedro Cal
    Jesse Thaler
    Wouter J. Waalewijn
    Journal of High Energy Physics, 2022
  • [33] Counting Reducible and Singular Bivariate Polynomials
    von zur Gathen, Joachim
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 369 - 376
  • [34] ON COUNTING POLYNOMIALS OVER FINITE FIELDS
    Chuang, Chih-Yun
    Kuan, Yen-Liang
    Yu, Jing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4305 - 4316
  • [35] STUDY OF IPR FULLERENES BY COUNTING POLYNOMIALS
    Ashrafi, A. R.
    Ghorbani, M.
    Jalali, M.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2009, 8 (03): : 451 - 457
  • [36] Counting reducible and singular bivariate polynomials
    von zur Gathen, Joachim
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) : 944 - 978
  • [37] ESTIMATES OF THE ZEROS OF SOME COUNTING POLYNOMIALS
    Mezo, Istvan
    Wang, Chen-Ying
    Guan, Hai-Yan
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 1 - 7
  • [38] On counting polynomials of certain polyomino chains
    Imran, M.
    Hayat, S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 (02): : 332 - 337
  • [39] Counting decomposable polynomials with integer coefficients
    Artūras Dubickas
    Min Sha
    Monatshefte für Mathematik, 2023, 200 : 229 - 253
  • [40] Distance Polynomial and the Related Counting Polynomials
    Hosoya, Haruo
    CROATICA CHEMICA ACTA, 2013, 86 (04) : 443 - 451