Tree Modules and Counting Polynomials

被引:0
|
作者
Ryan Kinser
机构
[1] Northeastern University,Department of Mathematics
来源
关键词
Quivers; Tree modules; Counting polynomials; 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
We give a formula for counting tree modules for the quiver Sg with g loops and one vertex in terms of tree modules on its universal cover. This formula, along with work of Helleloid and Rodriguez-Villegas, is used to show that the number of d-dimensional tree modules for Sg is polynomial in g with the same degree and leading coefficient as the counting polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{S_g}(d, q)$\end{document} for absolutely indecomposables over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_q$\end{document}, evaluated at q = 1.
引用
收藏
页码:1333 / 1347
页数:14
相关论文
共 50 条