The Kr-Packing Problem

被引:0
|
作者
Venkatesan Guruswami
C. Pandu Rangan
M. S. Chang
G. J. Chang
C. K. Wong
机构
[1] MIT Laboratory for Computer Science Cambridge,
[2] MA 01239,undefined
[3] USA venkat@theory.lcs.mit.edu,undefined
[4] Department of Computer Science and Engineering Indian Institute of Technology Madras-600 036,undefined
[5] India rangan@iitm.ernet.in,undefined
[6] Department of Computer Science and Information Engineering National Chung Cheng University Ming-Hsiun,undefined
[7] Chiayi 621 Taiwan,undefined
[8] Republic of China mschang@cs.ccu.edu.tw,undefined
[9] Department of Applied Mathematics National Chaio Tung University Hsinchu 30050 Taiwan,undefined
[10] Republic of China gjchang@math.nctu.edu.tw,undefined
[11] Department of Computer Science and Engineering Chinese University of Hong Kong,undefined
[12] Hong Kong wongck@cse.cuhk.edu.hk,undefined
来源
Computing | 2001年 / 66卷
关键词
AMS Subject Classifications: 05C70; 05C85; 68Q20.; Key Words: Matching; Kr-packing; Kr-factor; NP-completeness; chordal graph; split graph; cograph; line graph.;
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer r≥2, the Kr-packing problem is to find the maximum number of pairwise vertex-disjointKr's (complete graphs on r vertices) in a given graph. The Kr-factor problem asks for the existence of a partition of the vertex set of a graph into Kr's. The Kr-packing problem is a natural generalization of the classical matching problem, but turns out to be much harder for r≥3 – it is known that for r≥3 the Kr-factor problem is NP-complete for graphs with clique number r [16]. This paper considers the complexity of the Kr-packing problem on restricted classes of graphs.
引用
收藏
页码:79 / 89
页数:10
相关论文
共 50 条
  • [41] BLOCKING SETS AND THE PACKING PROBLEM
    GRONCHI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 227 - 236
  • [42] The mixed vertex packing problem
    Atamtürk A.
    Nemhauser G.L.
    Savelsbergh M.W.P.
    Mathematical Programming, 2000, 89 (1) : 35 - 53
  • [43] On the fractionality of the path packing problem
    Vanetik, Natalia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (04) : 526 - 539
  • [44] A PACKING PROBLEM FOR HOLOMORPHIC CURVES
    Tsukamoto, Masaki
    NAGOYA MATHEMATICAL JOURNAL, 2009, 194 : 33 - 68
  • [45] USEFUL BOUNDS IN PACKING PROBLEM
    JOHNSON, BM
    KOEHN, U
    GULATI, BR
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 2217 - &
  • [46] On the online bin packing problem
    Seiden, SS
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 237 - 248
  • [47] PACKING PROBLEM FOR TRIANGULAR MATRICES
    KLOTZ, W
    LUCHT, L
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (04): : 378 - &
  • [48] ALGORITHM FOR VERTEX PACKING PROBLEM
    HOUCK, DJ
    RAO, RV
    OPERATIONS RESEARCH, 1977, 25 (05) : 773 - 787
  • [49] USEFUL BOUNDS IN PACKING PROBLEM
    GULATI, BR
    KOUNIAS, EG
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 720 - &
  • [50] Bin packing problem with scenarios
    Attila Bódis
    János Balogh
    Central European Journal of Operations Research, 2019, 27 : 377 - 395