The Kr-Packing Problem

被引:0
|
作者
Venkatesan Guruswami
C. Pandu Rangan
M. S. Chang
G. J. Chang
C. K. Wong
机构
[1] MIT Laboratory for Computer Science Cambridge,
[2] MA 01239,undefined
[3] USA venkat@theory.lcs.mit.edu,undefined
[4] Department of Computer Science and Engineering Indian Institute of Technology Madras-600 036,undefined
[5] India rangan@iitm.ernet.in,undefined
[6] Department of Computer Science and Information Engineering National Chung Cheng University Ming-Hsiun,undefined
[7] Chiayi 621 Taiwan,undefined
[8] Republic of China mschang@cs.ccu.edu.tw,undefined
[9] Department of Applied Mathematics National Chaio Tung University Hsinchu 30050 Taiwan,undefined
[10] Republic of China gjchang@math.nctu.edu.tw,undefined
[11] Department of Computer Science and Engineering Chinese University of Hong Kong,undefined
[12] Hong Kong wongck@cse.cuhk.edu.hk,undefined
来源
Computing | 2001年 / 66卷
关键词
AMS Subject Classifications: 05C70; 05C85; 68Q20.; Key Words: Matching; Kr-packing; Kr-factor; NP-completeness; chordal graph; split graph; cograph; line graph.;
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer r≥2, the Kr-packing problem is to find the maximum number of pairwise vertex-disjointKr's (complete graphs on r vertices) in a given graph. The Kr-factor problem asks for the existence of a partition of the vertex set of a graph into Kr's. The Kr-packing problem is a natural generalization of the classical matching problem, but turns out to be much harder for r≥3 – it is known that for r≥3 the Kr-factor problem is NP-complete for graphs with clique number r [16]. This paper considers the complexity of the Kr-packing problem on restricted classes of graphs.
引用
收藏
页码:79 / 89
页数:10
相关论文
共 50 条
  • [21] THE INVENTORY PACKING PROBLEM
    HALL, NG
    NAVAL RESEARCH LOGISTICS, 1989, 36 (04) : 399 - 418
  • [22] The sphere packing problem in dimension 8The sphere packing problem in dimension 8
    Viazovska, Maryna S.
    ANNALS OF MATHEMATICS, 2017, 185 (03) : 991 - 1015
  • [23] The Path Set Packing Problem
    Xu, Chenyang
    Zhang, Guochuan
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 305 - 315
  • [24] A PACKING PROBLEM FOR MEASURABLE SETS
    SANKOFF, D
    DAWSON, DA
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04): : 749 - &
  • [25] The packing problem of uncertain multicasts
    Ren, Bangbang
    Guo, Deke
    Xie, Junjie
    Li, Wenxin
    Yuan, Bo
    Liu, Yunfei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (16):
  • [26] On a packing problem of Alon and Yuster
    Kostochka, A. V.
    McConvey, A.
    Yager, D.
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2785 - 2792
  • [27] Fuzzy bin packing problem
    Kim, Jong-Kyou
    Lee-Kwang, H.
    W. Yoo, Seung
    2001, Elsevier (120)
  • [28] Fuzzy bin packing problem
    Kim, JK
    Lee-Kwang, H
    Yoo, SW
    FUZZY SETS AND SYSTEMS, 2001, 120 (03) : 429 - 434
  • [29] The generalized bin packing problem
    Baldi, Mauro Maria
    Crainic, Teodor Gabriel
    Perboli, Guido
    Tadei, Roberto
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2012, 48 (06) : 1205 - 1220
  • [30] Introduction to the Packing and Cutting Problem
    Rao, Yunqing
    Luo, Qiang
    Engineering Applications of Computational Methods, 2022, 10 : 1 - 14