The Kr-Packing Problem

被引:0
|
作者
Venkatesan Guruswami
C. Pandu Rangan
M. S. Chang
G. J. Chang
C. K. Wong
机构
[1] MIT Laboratory for Computer Science Cambridge,
[2] MA 01239,undefined
[3] USA venkat@theory.lcs.mit.edu,undefined
[4] Department of Computer Science and Engineering Indian Institute of Technology Madras-600 036,undefined
[5] India rangan@iitm.ernet.in,undefined
[6] Department of Computer Science and Information Engineering National Chung Cheng University Ming-Hsiun,undefined
[7] Chiayi 621 Taiwan,undefined
[8] Republic of China mschang@cs.ccu.edu.tw,undefined
[9] Department of Applied Mathematics National Chaio Tung University Hsinchu 30050 Taiwan,undefined
[10] Republic of China gjchang@math.nctu.edu.tw,undefined
[11] Department of Computer Science and Engineering Chinese University of Hong Kong,undefined
[12] Hong Kong wongck@cse.cuhk.edu.hk,undefined
来源
Computing | 2001年 / 66卷
关键词
AMS Subject Classifications: 05C70; 05C85; 68Q20.; Key Words: Matching; Kr-packing; Kr-factor; NP-completeness; chordal graph; split graph; cograph; line graph.;
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer r≥2, the Kr-packing problem is to find the maximum number of pairwise vertex-disjointKr's (complete graphs on r vertices) in a given graph. The Kr-factor problem asks for the existence of a partition of the vertex set of a graph into Kr's. The Kr-packing problem is a natural generalization of the classical matching problem, but turns out to be much harder for r≥3 – it is known that for r≥3 the Kr-factor problem is NP-complete for graphs with clique number r [16]. This paper considers the complexity of the Kr-packing problem on restricted classes of graphs.
引用
收藏
页码:79 / 89
页数:10
相关论文
共 50 条
  • [1] The Kr-packing problem
    Guruswami, V
    Rangan, CP
    Chang, MS
    Chang, GJ
    Wong, CK
    COMPUTING, 2001, 66 (01) : 79 - 89
  • [2] A PACKING PROBLEM
    STANTON, RG
    WILLIAMS, HC
    ZARNKE, CR
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (02): : 287 - &
  • [3] Packing/unpacking information generation for efficient generalized kr→r and r→kr array redistribution
    Hsu, CH
    Chung, YC
    Dow, CR
    FRONTIERS '99 - THE SEVENTH SYMPOSIUM ON THE FRONTIERS OF MASSIVELY PARALLEL COMPUTATION, PROCEEDINGS, 1999, : 89 - 96
  • [4] ON THE PROBLEM OF PACKING IN CONTAINERS
    SMIRNOV, AV
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 203 - 204
  • [5] BIOSPHERIC PACKING PROBLEM
    WOODWELL, GM
    ECOLOGY, 1970, 51 (01) : 1 - &
  • [6] The multicast packing problem
    Chen, SW
    Günlük, O
    Yener, B
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2000, 8 (03) : 311 - 318
  • [7] Consequences of the packing problem
    Hrishikesh Bodas
    Benjamin Drabkin
    Caleb Fong
    Su Jin
    Justin Kim
    Wenxuan Li
    Alexandra Seceleanu
    Tingting Tang
    Brendan Williams
    Journal of Algebraic Combinatorics, 2021, 54 : 1095 - 1117
  • [8] The board packing problem
    Abraham, Gyula
    Dosa, Gyorgy
    Hvattum, Lars Magnus
    Olaj, Tomas Attila
    Tuza, Zsolt
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 308 (03) : 1056 - 1073
  • [9] ON THE STAR PACKING PROBLEM
    NING, Q
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 411 - 416
  • [10] On a square packing problem
    Boucheron, S
    de la Vega, WF
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02): : 113 - 127