Cross-pair correlation;
Elastic net;
LASSO;
Log Gaussian Cox process;
Multivariate point process;
Proximal Newton method;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Statistical inference for highly multivariate point pattern data is challenging due to complex models with large numbers of parameters. In this paper, we develop numerically stable and efficient parameter estimation and model selection algorithms for a class of multivariate log Gaussian Cox processes. The methodology is applied to a highly multivariate point pattern data set from tropical rain forest ecology.
机构:
Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, AustraliaUniv New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
Dovers, Elliot
Brooks, Wesley
论文数: 0引用数: 0
h-index: 0
机构:Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
Brooks, Wesley
Popovic, Gordana C. C.
论文数: 0引用数: 0
h-index: 0
机构:Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
Popovic, Gordana C. C.
Warton, David I. I.
论文数: 0引用数: 0
h-index: 0
机构:Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
机构:
Univ Lancaster, Dept Math & Stat, Med Stat Unit, Lancaster LA1 4YF, EnglandUniv Lancaster, Dept Math & Stat, Med Stat Unit, Lancaster LA1 4YF, England
Brix, A
Diggle, PJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Dept Math & Stat, Med Stat Unit, Lancaster LA1 4YF, EnglandUniv Lancaster, Dept Math & Stat, Med Stat Unit, Lancaster LA1 4YF, England