Convergence of posteriors for discretized log Gaussian Cox processes

被引:19
|
作者
Waagepetersen, R [1 ]
机构
[1] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg, Denmark
关键词
Bayesian inference; discretization; log Gaussian Cox process; Monte Carlo; point processes; posterior;
D O I
10.1016/j.spl.2003.10.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [1] Log Gaussian Cox processes
    Moller, J
    Syversveen, AR
    Waagepetersen, RP
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 451 - 482
  • [2] Log Gaussian Cox processes on the sphere
    Cuevas-Pacheco, Francisco
    Moller, Jesper
    [J]. SPATIAL STATISTICS, 2018, 26 : 69 - 82
  • [3] Palm Distributions for Log Gaussian Cox Processes
    Coeurjolly, Jean-Francois
    Moller, Jesper
    Waagepetersen, Rasmus
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 192 - 203
  • [4] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [5] Regularized estimation for highly multivariate log Gaussian Cox processes
    Choiruddin, Achmad
    Cuevas-Pacheco, Francisco
    Coeurjolly, Jean-Francois
    Waagepetersen, Rasmus
    [J]. STATISTICS AND COMPUTING, 2020, 30 (03) : 649 - 662
  • [6] Numerical Approximations of Log Gaussian Cox Processes (Student Abstract)
    Buet-Golfouse, Francois
    Roggeman, Hans
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12923 - 12924
  • [7] Regularized estimation for highly multivariate log Gaussian Cox processes
    Achmad Choiruddin
    Francisco Cuevas-Pacheco
    Jean-François Coeurjolly
    Rasmus Waagepetersen
    [J]. Statistics and Computing, 2020, 30 : 649 - 662
  • [8] On new families of anisotropic spatial log-Gaussian Cox processes
    Fariba Nasirzadeh
    Zohreh Shishebor
    Jorge Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2021, 35 : 183 - 213
  • [9] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213
  • [10] Bayesian Variable Selection Methods for Log-Gaussian Cox Processes
    Pinto Junior, Jony Arrais
    da Silva, Patricia Viana
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37, 2018, 239 : 101 - 110