Optimal Paths for Symmetric Actions in the Unitary Group

被引:0
|
作者
Jorge Antezana
Gabriel Larotonda
Alejandro Varela
机构
[1] Universidad Nacional de La Plata,Departamento de Matemática, Facultad de Ciencias Exactas
[2] Instituto Argentino de Matemática “Alberto P. Calderón”,Instituto de Ciencias
[3] CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas,undefined
[4] Argentina),undefined
[5] Universidad Nacional de General Sarmiento,undefined
来源
关键词
Optimal Path; Unitary Group; Unitary Matrice; Geodesic Segment; Grassmann Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive and unitarily invariant Lagrangian L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} defined in the algebra of matrices, and a fixed time interval [0,t0]⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[0,t_0]\subset\mathbb R}$$\end{document}, we study the action defined in the Lie group of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\times n}$$\end{document} unitary matrices U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} by S(α)=∫0t0L(α˙(t))dt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}(\alpha)=\int_0^{t_0} \mathcal{L}(\dot\alpha(t))\,dt, $$\end{document}where α:[0,t0]→U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha:[0,t_0]\to\mathcal{U}(n)}$$\end{document} is a rectifiable curve. We prove that the one-parameter subgroups of U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} as well as angular metrics in the Grassmann manifold.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 50 条
  • [41] Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups
    Lingli Zeng
    Jizhu Nan
    Czechoslovak Mathematical Journal, 2016, 66 : 1059 - 1078
  • [42] UNITARY ACTIONS ON NESTS AND THE WEYL RELATIONS
    ANOUSSIS, M
    KATAVOLOS, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 265 - 272
  • [43] UNITARY ACTIONS OF LEVY FLOWS OF DIFFEOMORPHISMS
    APPLEBAUM, D
    JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (02) : 266 - 277
  • [44] Free Symmetric and Unitary Pairs in the Field of Fractions of Torsion-Free Nilpotent Group Algebras
    Ferreira, Vitor O.
    Goncalves, Jairo Z.
    Sanchez, Javier
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (03) : 605 - 619
  • [45] Combined unitary and symmetric group approach applied to low-dimensional Heisenberg spin systems
    Dobrautz, Werner
    Katukuri, Vamshi M.
    Bogdanov, Nikolay A.
    Kats, Daniel
    Li Manni, Giovanni
    Alavi, Ali
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [46] Free Symmetric and Unitary Pairs in the Field of Fractions of Torsion-Free Nilpotent Group Algebras
    Vitor O. Ferreira
    Jairo Z. Gonçalves
    Javier Sánchez
    Algebras and Representation Theory, 2020, 23 : 605 - 619
  • [47] Infinitesimal Isospectral Deformations of Symmetric Spaces, II: Quotients of the Special Unitary Group of Rank Two
    Gasqui, Jacques
    Goldschmidt, Hubert
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2012, 8 (04) : 851 - 920
  • [48] ON SYMMETRIC GROUP S-3 ACTIONS ON SPIN 4-MANIFOLDS
    Liu, Ximin
    Li, Hongxia
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2007, 76 (02): : 247 - 256
  • [49] Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories
    Carbone, Lisa
    Murray, Scott H.
    Sati, Hisham
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [50] Symmetric group actions on homotopy S2 × S2
    Ximin Liu
    Hongxia Li
    Monatshefte für Mathematik, 2008, 153 : 49 - 57