Optimal Paths for Symmetric Actions in the Unitary Group

被引:0
|
作者
Jorge Antezana
Gabriel Larotonda
Alejandro Varela
机构
[1] Universidad Nacional de La Plata,Departamento de Matemática, Facultad de Ciencias Exactas
[2] Instituto Argentino de Matemática “Alberto P. Calderón”,Instituto de Ciencias
[3] CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas,undefined
[4] Argentina),undefined
[5] Universidad Nacional de General Sarmiento,undefined
来源
关键词
Optimal Path; Unitary Group; Unitary Matrice; Geodesic Segment; Grassmann Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive and unitarily invariant Lagrangian L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} defined in the algebra of matrices, and a fixed time interval [0,t0]⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[0,t_0]\subset\mathbb R}$$\end{document}, we study the action defined in the Lie group of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\times n}$$\end{document} unitary matrices U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} by S(α)=∫0t0L(α˙(t))dt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}(\alpha)=\int_0^{t_0} \mathcal{L}(\dot\alpha(t))\,dt, $$\end{document}where α:[0,t0]→U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha:[0,t_0]\to\mathcal{U}(n)}$$\end{document} is a rectifiable curve. We prove that the one-parameter subgroups of U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{U}(n)}$$\end{document} as well as angular metrics in the Grassmann manifold.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 50 条