Sharp Bounds for Sums of Coefficients of Inverses of Convex Functions

被引:0
|
作者
Farit G. Avkhadiev
Karl-Joachim Wirths
机构
[1] Kazan State University,Chebotarev Research Institute
[2] TU Braunschweig,Institut für Analysis und Algebra
关键词
Taylor coefficients; convex functions; inverse functions; bounded functions; 30C50; 30C45; 30D50;
D O I
10.1007/BF03321634
中图分类号
学科分类号
摘要
Let D denote the open unit disc and f: D → ℂ be holomorphic and injective in D such that f(D) is a convex domain and f(0) = f’(0) − 1 = 0. Let F be the inverse function of f defined in a neighbourhood of the origin and k ∈ ℕ. We consider the Taylor expansions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F(w))^k=\sum_{n=k}^{\infty} A_{n,k}w^{n}$$\end{document}. We prove that the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\biggr|\sum_{k=1}^nA_{n,k}\biggr| \leq 2^{n-1}$$\end{document} is valid for any n ∈ ℕ and that equality occurs in this inequality for a fixed n ≥ 2 if and only if f(z) = z/(1 + z).
引用
收藏
页码:105 / 109
页数:4
相关论文
共 50 条
  • [1] Sharp Bounds on Coefficients Functionals of Hankel Determinants for Ozaki Close-to-Convex Functions
    Sun, Yong
    Kuang, Wei-Ping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [2] Sharp Convex Bounds on the Aggregate Sums-An Alternative Proof
    Yin, Chuancun
    Zhu, Dan
    RISKS, 2016, 4 (04):
  • [3] Sharp Coefficients Bounds for Starlike Functions Associated with Gregory Coefficients
    Sercan Kazımoğlu
    Erhan Deniz
    H. M. Srivastava
    Complex Analysis and Operator Theory, 2024, 18
  • [4] Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions
    Eker, Sevtap Sumer
    Seker, Bilal
    Cekic, Bilal
    Acu, Mugur
    AXIOMS, 2022, 11 (08)
  • [5] Sharp Coefficients Bounds for Starlike Functions Associated with Gregory Coefficients
    Kazimoglu, Sercan
    Deniz, Erhan
    Srivastava, H. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [6] SUMS OF THE INVERSES OF BINOMIAL COEFFICIENTS
    ROCKETT, AM
    FIBONACCI QUARTERLY, 1981, 19 (05): : 433 - 437
  • [7] On sharp bounds of certain close-to-convex functions
    Goel, Priyanka
    Kumar, S. Sivaprasad
    AFRIKA MATEMATIKA, 2024, 35 (02)
  • [8] Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions
    Srivastava, H. M.
    Rath, Biswajit
    Kumar, K. Sanjay
    Krishna, D. Vamshee
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [9] Sums Involving the Inverses of Binomial Coefficients
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2006, 9 (04)
  • [10] Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions
    Shi, Lei
    Arif, Muhammad
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (04) : 487 - 504