Sharp Bounds for Sums of Coefficients of Inverses of Convex Functions

被引:0
|
作者
Farit G. Avkhadiev
Karl-Joachim Wirths
机构
[1] Kazan State University,Chebotarev Research Institute
[2] TU Braunschweig,Institut für Analysis und Algebra
关键词
Taylor coefficients; convex functions; inverse functions; bounded functions; 30C50; 30C45; 30D50;
D O I
10.1007/BF03321634
中图分类号
学科分类号
摘要
Let D denote the open unit disc and f: D → ℂ be holomorphic and injective in D such that f(D) is a convex domain and f(0) = f’(0) − 1 = 0. Let F be the inverse function of f defined in a neighbourhood of the origin and k ∈ ℕ. We consider the Taylor expansions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F(w))^k=\sum_{n=k}^{\infty} A_{n,k}w^{n}$$\end{document}. We prove that the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\biggr|\sum_{k=1}^nA_{n,k}\biggr| \leq 2^{n-1}$$\end{document} is valid for any n ∈ ℕ and that equality occurs in this inequality for a fixed n ≥ 2 if and only if f(z) = z/(1 + z).
引用
收藏
页码:105 / 109
页数:4
相关论文
共 50 条
  • [31] Certain Sums Involving Inverses of Binomial Coefficients and Some Integrals
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (08)
  • [32] On Sharp Bounds on Partition Dimension of Convex Polytopes
    Chu, Yu-Ming
    Nadeem, Muhammad Faisal
    Azeem, Muhammad
    Siddiqui, Muhammad Kamran
    IEEE ACCESS, 2020, 8 (08): : 224781 - 224790
  • [33] Sharp Recovery Bounds for Convex Demixing, with Applications
    Michael B. McCoy
    Joel A. Tropp
    Foundations of Computational Mathematics, 2014, 14 : 503 - 567
  • [34] Sharp Recovery Bounds for Convex Demixing, with Applications
    McCoy, Michael B.
    Tropp, Joel A.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (03) : 503 - 567
  • [35] On functions and inverses, both positive, decreasing and convex: And Stieltjes functions
    Keady, G.
    Khajohnsaksumeth, N.
    Wiwatanapataphee, B.
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [36] SHARP BOUNDS OF SOME COEFFICIENT FUNCTIONALS OVER THE CLASS OF FUNCTIONS CONVEX IN THE DIRECTION OF THE IMAGINARY AXIS
    Cho, Nak Fun
    Kowalczyk, Bogumila
    Lecko, Adam
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) : 86 - 96
  • [37] Partial sums of starlike and convex functions
    Silverman, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 209 (01) : 221 - 227
  • [38] Formulas for subdifferentials of sums of convex functions
    Jules, F
    Lassonde, M
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 519 - 533
  • [40] Sharp bounds on generalized EXIT functions
    Macris, Nicolas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2365 - 2375