Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions

被引:1
|
作者
Shi, Lei [1 ]
Arif, Muhammad [2 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 45002, Henan, Peoples R China
[2] Abdul Wali Khan Univ Mardan, Fac Phys & Numer Sci, Mardan 23200, Pakistan
关键词
univalent functions; Hankel determinant; Ozaki close-to-convex functions; convex functions; KIND;
D O I
10.1007/s10986-023-09610-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main purpose in this paper is to obtain certain sharp estimates of the third Hankel determinant for the class F of Ozaki close-to-convex functions. This class was introduced by Ozaki in 1941. Functions in F are not necessarily starlike but are convex in one direction and so are close-to-convex. We prove that the sharp bounds of Script capital H3,1(f) and Script capital H3,1(f-1) for f is an element of F are all equal to 1/16. We also calculate the sharp bounds of the third Hankel determinant with entry of coefficients on the inverse of convex functions.
引用
收藏
页码:487 / 504
页数:18
相关论文
共 50 条
  • [1] Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions
    Lei Shi
    Muhammad Arif
    [J]. Lithuanian Mathematical Journal, 2023, 63 : 487 - 504
  • [2] Bounds on third Hankel determinant for close-to-convex functions
    Prajapat, J. K.
    Bansal, Deepak
    Singh, Alok
    Mishra, Ambuj K.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2015, 7 (02) : 210 - 219
  • [3] Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions
    Srivastava, H. M.
    Rath, Biswajit
    Kumar, K. Sanjay
    Krishna, D. Vamshee
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [4] The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
    Young Jae Sim
    Adam Lecko
    Derek K. Thomas
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2515 - 2533
  • [5] Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions
    Guo, Dong
    Tang, Huo
    Zhang, Jun
    Li, Zongtao
    Xu, Qingbing
    Ao, En
    [J]. SYMMETRY-BASEL, 2023, 15 (06):
  • [6] The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
    Sim, Young Jae
    Lecko, Adam
    Thomas, Derek K.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2515 - 2533
  • [7] Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions
    Zaprawa, Pawel
    Trabka-Wieclaw, Katarzyna
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [8] Sharp Bounds on Coefficients Functionals of Hankel Determinants for Ozaki Close-to-Convex Functions
    Sun, Yong
    Kuang, Wei-Ping
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [9] ON THE THIRD HANKEL DETERMINANT FOR A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Sahoo, Pravati
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (01): : 59 - 73
  • [10] A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS
    Parida, Laxmipriya
    Bulboaca, Teodor
    Sahoo, Ashok Kumar
    [J]. HONAM MATHEMATICAL JOURNAL, 2024, 46 (03): : 515 - 521