Bounds on third Hankel determinant for close-to-convex functions

被引:19
|
作者
Prajapat, J. K. [1 ]
Bansal, Deepak [2 ]
Singh, Alok [1 ]
Mishra, Ambuj K. [3 ]
机构
[1] Cent Univ Rajasthan, Dept Math, Ajmer, India
[2] Govt Coll Engn & Technol, Dept Math, Ajmer, India
[3] GLA Univ, Dept Math, Mathura, India
关键词
analytic functions; univalent function; close-to-convex function; Fekete-Szego functional; Hankel determinant;
D O I
10.1515/ausm-2015-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have obtained upper bound on third Hankel determinant for the functions belonging to the class of close-to-convex functions.
引用
收藏
页码:210 / 219
页数:10
相关论文
共 50 条
  • [1] Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions
    Zaprawa, Pawel
    Trabka-Wieclaw, Katarzyna
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [2] Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions
    Lei Shi
    Muhammad Arif
    [J]. Lithuanian Mathematical Journal, 2023, 63 : 487 - 504
  • [3] Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions
    Shi, Lei
    Arif, Muhammad
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (04) : 487 - 504
  • [4] ON THE THIRD HANKEL DETERMINANT FOR A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Sahoo, Pravati
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (01): : 59 - 73
  • [5] A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS
    Parida, Laxmipriya
    Bulboaca, Teodor
    Sahoo, Ashok Kumar
    [J]. HONAM MATHEMATICAL JOURNAL, 2024, 46 (03): : 515 - 521
  • [6] Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions
    Guo, Dong
    Tang, Huo
    Zhang, Jun
    Li, Zongtao
    Xu, Qingbing
    Ao, En
    [J]. SYMMETRY-BASEL, 2023, 15 (06):
  • [7] Second Hankel determinant for close-to-convex functions
    Raducanu, Dorina
    Zaprawa, Pawel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (10) : 1063 - 1071
  • [8] Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions
    Srivastava, H. M.
    Rath, Biswajit
    Kumar, K. Sanjay
    Krishna, D. Vamshee
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [9] The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
    Sim, Young Jae
    Lecko, Adam
    Thomas, Derek K.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2515 - 2533
  • [10] The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
    Young Jae Sim
    Adam Lecko
    Derek K. Thomas
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2515 - 2533