An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition

被引:0
|
作者
Luminiţa Barbu
Andreea Burlacu
Gheorghe Moroşanu
机构
[1] Ovidius University,Faculty of Mathematics and Informatics
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] Academy of Romanian Scientists,undefined
来源
关键词
Eigenvalues; -Laplacian; variational methods; Krasnosel’skiĭ genus; Ljusternik-Schnirelmann theory; manifold; 35J60; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, be a bounded domain with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. Consider the following nonlinear eigenvalue problem -Δpu-Δqu+ρ(x)∣u∣q-2u=λα(x)∣u∣r-2uinΩ,∂u∂νpq+γ(x)∣u∣q-2u=λβ(x)∣u∣r-2uon∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta _p u-\Delta _q u+\rho (x) \mid u\mid ^{q-2}u=\lambda \alpha (x) \mid u\mid ^{r-2}u\ \ \text{ in } ~ \Omega ,\\ \frac{\partial u}{\partial \nu _{pq}}+\gamma (x)\mid u\mid ^{q-2}u=\lambda \beta (x) \mid u\mid ^{r-2}u ~ \text{ on } ~ \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where p,q,r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r\in (1,\infty )$$\end{document} with p≠q;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne q;$$\end{document}α,ρ∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \rho \in L^{\infty }(\Omega )$$\end{document}, β,γ∈L∞(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma \in L^{\infty }(\partial \Omega )$$\end{document}, Δθu:=div(‖∇u‖θ-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\theta }u:= \text{ div }~ (\Vert \nabla u\Vert ^{\theta -2}\nabla u)$$\end{document}, θ∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in \{p,q\}$$\end{document}, and ∂u∂νpq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial \nu _{pq}}$$\end{document} denotes the conormal derivative corresponding to the differential operator -Δp-Δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _p -\Delta _q$$\end{document}. Under suitable assumptions, we provide the full description of the spectrum of the above problem in eight cases out of ten, and for the other two complementary cases, we obtain subsets of the corresponding spectra. Notice that when some of the potentials α,β,ρ,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta , \rho , \gamma $$\end{document} are null functions, the above eigenvalue problem reduces to Neumann-, Robin- or Steklov-type problems, and so we obtain the spectra of these particular eigenvalue problems.
引用
收藏
相关论文
共 50 条
  • [1] An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [2] The Eigenvalue Problem for p(x)-Laplacian Equations Involving Robin Boundary Condition
    Lujuan YU
    Fengquan LI
    Fei XU
    [J]. Journal of Mathematical Research with Applications, 2018, 38 (01) : 63 - 76
  • [3] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    A. Zerouali
    B. Karim
    O. Chakrone
    A. Boukhsas
    [J]. Afrika Matematika, 2019, 30 : 171 - 179
  • [4] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    Zerouali, A.
    Karim, B.
    Chakrone, O.
    Boukhsas, A.
    [J]. AFRIKA MATEMATIKA, 2019, 30 (1-2) : 171 - 179
  • [5] Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 547 - 561
  • [6] ON THE EIGENVALUE SET OF THE (p, q)-LAPLACIAN WITH A NEUMANN-STEKLOV BOUNDARY CONDITION
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (5-6) : 437 - 452
  • [7] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64
  • [8] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [9] On an eigenvalue problem involving the fractional (s, p)-Laplacian
    Maria Fărcăşeanu
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 : 94 - 103
  • [10] ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN
    Farcaseanu, Maria
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 94 - 103