Several Grüss’ type inequalities for the complex integral

被引:0
|
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering and Science
[2] University of the Witwatersrand,DST
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Complex integral; Continuous functions; Holomorphic functions; Grüss inequality; 26D15; 26D10; 30A10; 30A86;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that f and g are continuous on γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, γ⊂C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \subset \mathbb { C}$$\end{document} is a piecewise smooth path parametrized by zt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( t\right) ,$$\end{document}t∈a,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ a,b\right]$$\end{document} from za=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( a\right) =u$$\end{document} to zb=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( b\right) =w$$\end{document} with w≠u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\ne u$$\end{document} and the complexČebyšev functional is defined by Dγf,g:=1w-u∫γfzgzdz-1w-u∫γfzdz1w-u∫γgzdz.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {D}_{\gamma }\left( f,g\right) :=\frac{1}{w-u}\int _{\gamma }f\left( z\right) g\left( z\right) dz-\frac{1}{w-u}\int _{\gamma }f\left( z\right) dz \frac{1}{w-u}\int _{\gamma }g\left( z\right) dz. \end{aligned}$$\end{document}In this paper we establish some bounds for the magnitude of the functional Dγf,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_{\gamma }\left( f,g\right)$$\end{document} and a related version of this under various assumptions for the functions f and g and provide some examples for circular paths.
引用
收藏
页码:337 / 351
页数:14
相关论文
共 50 条
  • [1] On some Grüss’ type inequalities for the complex integral
    Silvestru Sever Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3531 - 3543
  • [2] Grüss type and related integral inequalities in probability spaces
    László Horváth
    Aequationes mathematicae, 2019, 93 : 743 - 756
  • [3] A generalized form of Grüss type inequality and other integral inequalities
    Nicuşor Minculete
    Loredana Ciurdariu
    Journal of Inequalities and Applications, 2014
  • [4] Several Gruss' type inequalities for the complex integral
    Dragomir, Silvestru Sever
    JOURNAL OF ANALYSIS, 2021, 29 (01): : 337 - 351
  • [5] Certain Grüss type inequalities involving the generalized fractional integral operator
    Guotao Wang
    Praveen Agarwal
    Mehar Chand
    Journal of Inequalities and Applications, 2014
  • [6] Some new fractional q-integral Grüss-type inequalities and other inequalities
    Chaowu Zhu
    Wengui Yang
    Qingbo Zhao
    Journal of Inequalities and Applications, 2012
  • [7] Grüss Type k-Fractional Integral Operator Inequalities and Allied Results
    Farid, Ghulam
    Mehmood, Sajid
    Rathour, Laxmi
    Elamin, Mawahib
    Ahamd, Huda Uones Mohamd
    Yahia, Neama
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [8] Several Jensen–Grüss Inequalities with Applications in Information Theory
    S. I. Butt
    Ð. Pečarić
    J. Pečarić
    Ukrainian Mathematical Journal, 2023, 74 : 1888 - 1908
  • [9] GRÜSS INEQUALITIES FOR THE β−INTEGRAL ASSOCIATED WITH THE GENERAL QUANTUM OPERATOR
    Centro de Matemática, Universidade do Minho - Polo CMAT-UTAD, Dep. de Matemática da Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro , Polo Quinta de Prados, Vila Real
    5001-801, Portugal
    不详
    742149, India
    不详
    5001-801, Portugal
    arXiv,
  • [10] Generalized Ostrowski–Grüss-type Inequalities
    Heiner Gonska
    Ioan Raşa
    Maria-Daniela Rusu
    Results in Mathematics, 2012, 62 : 311 - 318