Existence Results for the Kirchhoff Type Equation with a General Nonlinear Term

被引:0
|
作者
Huirong Pi
Yong Zeng
机构
[1] Guangxi University,School of Mathematics and Information
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
Kirchhoff type equation; general nonlinearity; variational methods; Pohozaev identity; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \left({a + b\,\int_{{\mathbb{R}^3}} {{{\left| {\nabla u} \right|}^2}}} \right)\Delta u + V\left(x \right)u = f\left(u \right)\,\,{\rm{in}}\,\,{\mathbb{R}^3}$$\end{document}, with the general hypotheses on the nonlinearity f being as introduced by Berestycki and Lions. Our analysis introduces variational techniques to the analysis of the effect of the nonlinearity, especially for those cases when the concentration-compactness principle cannot be applied in terms of obtaining the compactness of the bounded Palais-Smale sequences and a minimizing problem related to the existence of a ground state on the Pohozaev manifold rather than the Nehari manifold associated with the equation.
引用
收藏
页码:2063 / 2077
页数:14
相关论文
共 50 条
  • [41] LOCAL EXISTENCE AND BLOW UP FOR A NONLINEAR VISCOELASTIC KIRCHHOFF-TYPE EQUATION WITH LOGARITHMIC NONLINEARITY
    Piskin, Erhan
    Boulaaras, Salah
    Irkil, Nazli
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (03): : 335 - 351
  • [42] Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation
    Kim, Daewook
    Kim, Dojin
    Hong, Keum-Shik
    Jung, Il Hyo
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [43] Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary
    Santos, M. L.
    Ferreira, J.
    Raposo, C. A.
    ABSTRACT AND APPLIED ANALYSIS, 2005, (08) : 901 - 919
  • [44] Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains
    Bae, JJ
    Nakao, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (2-3) : 731 - 743
  • [45] Global existence for nonlinear hyperbolic systems of Kirchhoff type
    Callegari, E
    Manfrin, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 132 (02) : 239 - 274
  • [46] Existence and stability results of a plate equation with nonlinear damping and source term
    Al-Gharabli, Mohammad M.
    Al-Mahdi, Adel M.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (11): : 4038 - 4065
  • [47] EXISTENCE AND CONCENTRATION OF POSITIVE SOLUTIONS FOR NONLINEAR KIRCHHOFF-TYPE PROBLEMS WITH A GENERAL CRITICAL NONLINEARITY
    Zhang, Jianjun
    Costa, David G.
    Joao Marcos, do O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (04) : 1023 - 1040
  • [48] LOCAL EXISTENCE FOR A VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH THE DISPERSIVE TERM, INTERNAL DAMPING, AND LOGARITHMIC NONLINEARITY
    Cordeiro, Sebastiao
    Raposo, Carlos
    Ferreira, Jorge
    Rocha, Daniel
    Shahrouzi, Mohammad
    OPUSCULA MATHEMATICA, 2024, 44 (01) : 19 - 47
  • [49] Existence p results of positive solutions for Kirchhoff type biharmonic equation via bifurcation methods
    Wang, Jinxiang
    Wang, Da-Bin
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1824 - 1834
  • [50] Existence of Solutions for the Kirchhoff-Type Wave Equation with Memory Term and Acoustic Boundary Conditions
    Ha, Tae Gab
    Park, Jong Yeoul
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (08) : 921 - 935