LOCAL EXISTENCE FOR A VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH THE DISPERSIVE TERM, INTERNAL DAMPING, AND LOGARITHMIC NONLINEARITY

被引:2
|
作者
Cordeiro, Sebastiao [1 ]
Raposo, Carlos [2 ]
Ferreira, Jorge [3 ]
Rocha, Daniel [4 ]
Shahrouzi, Mohammad [5 ]
机构
[1] Fed Univ Para, Fac Exact Sci & Technol, R Manoel Abreu, BR-68440000 Abaetetuba, Para, Brazil
[2] Fed Univ Bahia Dept, Dept Math, Ave Milton Santos, BR-40170110 Salvador, BA, Brazil
[3] Fed Fluminense Univ, Dept Exact Sci, Ave Trabalhadores, BR-27255125 Rio De Janeiro, Brazil
[4] Fed Univ Para, Inst Exact & Nat Sci, R Augusto Correa, BR-66075110 Belem, Para, Brazil
[5] Jahrom Univ, Dept Math, GJPJ 8PW, Jahrom 7413766171, Fars Province, Iran
关键词
viscoelastic equation; dispersive term; logarithmic nonlinearity; local existence; GLOBAL EXISTENCE; STABILITY;
D O I
10.7494/OpMath.2024.44.1.19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a viscoelastic Kirchhoff-type equation with the dispersive term, internal damping, and logarithmic nonlinearity. We prove the local existence of a weak solution via a modified lemma of contraction of the Banach fixed-point theorem. Although the uniqueness of a weak solution is still an open problem, we proved uniqueness locally for specifically suitable exponents. Furthermore, we established a result for local existence without guaranteeing uniqueness, stating a contraction lemma.
引用
收藏
页码:19 / 47
页数:29
相关论文
共 50 条