Necklace Lie algebras and noncommutative symplectic geometry

被引:0
|
作者
Raf Bocklandt
Lieven Le Bruyn
机构
[1] Universiteit Antwerpen (UIA),
[2] B-2610 Antwerp,undefined
[3] Belgium (e-mail: rbockl@wins.uia.ac.be; http://win-www.uia.ac.be/u/rbockl/; lebruyn@wins.uia.ac.be; http://win-www.uia.ac.be/u/lebruyn/) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 240卷
关键词
Phase Space; Symplectic Geometry; Coadjoint Orbit; Combinatorial Description; Relevant Couple;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from noncommutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9] we give a combinatorial description of all the relevant couples \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\alpha,\lambda)$\end{document} which are coadjoint orbits. We give a conjectural explanation for this coadjoint orbit result and relate it to different noncommutative notions of smoothness.
引用
收藏
页码:141 / 167
页数:26
相关论文
共 50 条
  • [1] Necklace Lie algebras and noncommutative symplectic geometry
    Bocklandt, R
    Le Bruyn, L
    MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (01) : 141 - 167
  • [2] Noncommutative geometry with graded differential Lie algebras
    Wulkenhaar, R.
    Journal of Mathematical Physics, 38 (06):
  • [3] Noncommutative geometry with graded differential Lie algebras
    Wulkenhaar, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 3358 - 3390
  • [4] Sobolev algebras on Lie groups and noncommutative geometry
    Arhancet, Cedric
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (01) : 451 - 500
  • [5] On certain graded Lie algebras arising in noncommutative geometry
    Matthes, R
    Rudolph, G
    Wulkenhaar, R
    ACTA PHYSICA POLONICA B, 1996, 27 (10): : 2755 - 2762
  • [6] Noncommutative Lie algebras
    Dzhumadil'daev, A
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 108 - 112
  • [7] The necklace Lie coalgebra and renormalization algebras
    Gan, Wee Liang
    Schedler, Travis
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2008, 2 (02) : 195 - 214
  • [8] Symplectic groups over noncommutative algebras
    Daniele Alessandrini
    Arkady Berenstein
    Vladimir Retakh
    Eugen Rogozinnikov
    Anna Wienhard
    Selecta Mathematica, 2022, 28
  • [9] Symplectic groups over noncommutative algebras
    Alessandrini, Daniele
    Berenstein, Arkady
    Retakh, Vladimir
    Rogozinnikov, Eugen
    Wienhard, Anna
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [10] Symplectic Novikov Lie algebras
    Aissa, T. Ait
    Mansouri, M. W.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2921 - 2933