Necklace Lie algebras and noncommutative symplectic geometry

被引:0
|
作者
Raf Bocklandt
Lieven Le Bruyn
机构
[1] Universiteit Antwerpen (UIA),
[2] B-2610 Antwerp,undefined
[3] Belgium (e-mail: rbockl@wins.uia.ac.be; http://win-www.uia.ac.be/u/rbockl/; lebruyn@wins.uia.ac.be; http://win-www.uia.ac.be/u/lebruyn/) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 240卷
关键词
Phase Space; Symplectic Geometry; Coadjoint Orbit; Combinatorial Description; Relevant Couple;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from noncommutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9] we give a combinatorial description of all the relevant couples \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\alpha,\lambda)$\end{document} which are coadjoint orbits. We give a conjectural explanation for this coadjoint orbit result and relate it to different noncommutative notions of smoothness.
引用
收藏
页码:141 / 167
页数:26
相关论文
共 50 条