Necklace Lie algebras and noncommutative symplectic geometry

被引:57
|
作者
Bocklandt, R [1 ]
Le Bruyn, L [1 ]
机构
[1] Univ Instelling Antwerp, B-2610 Antwerp, Belgium
关键词
D O I
10.1007/s002090100366
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from non-commutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9] we give a combinatorial description of all the relevant couples (alpha, lambda) which are coadjoint orbits. We give a conjectural explanation for this coadjoint orbit result and relate it to different noncommutative notions of smoothness.
引用
收藏
页码:141 / 167
页数:27
相关论文
共 50 条
  • [1] Necklace Lie algebras and noncommutative symplectic geometry
    Raf Bocklandt
    Lieven Le Bruyn
    [J]. Mathematische Zeitschrift, 2002, 240 : 141 - 167
  • [2] Noncommutative geometry with graded differential Lie algebras
    Wulkenhaar, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 3358 - 3390
  • [3] Sobolev algebras on Lie groups and noncommutative geometry
    Arhancet, Cedric
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (01) : 451 - 500
  • [4] On certain graded Lie algebras arising in noncommutative geometry
    Matthes, R
    Rudolph, G
    Wulkenhaar, R
    [J]. ACTA PHYSICA POLONICA B, 1996, 27 (10): : 2755 - 2762
  • [5] Noncommutative Lie algebras
    Dzhumadil'daev, A
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 108 - 112
  • [6] The necklace Lie coalgebra and renormalization algebras
    Gan, Wee Liang
    Schedler, Travis
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2008, 2 (02) : 195 - 214
  • [7] Symplectic groups over noncommutative algebras
    Daniele Alessandrini
    Arkady Berenstein
    Vladimir Retakh
    Eugen Rogozinnikov
    Anna Wienhard
    [J]. Selecta Mathematica, 2022, 28
  • [8] Symplectic groups over noncommutative algebras
    Alessandrini, Daniele
    Berenstein, Arkady
    Retakh, Vladimir
    Rogozinnikov, Eugen
    Wienhard, Anna
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [9] Symplectic Novikov Lie algebras
    Aissa, T. Ait
    Mansouri, M. W.
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2921 - 2933
  • [10] Flat symplectic Lie algebras
    Boucetta, Mohamed
    El Ouali, Hamza
    Lebzioui, Hicham
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4382 - 4399