(g, f)–Factorizations Randomly Orthogonal to a Subgraph in Graphs

被引:0
|
作者
Hao Zhao
Gui Zhen Liu
Xiao Xia Yan
机构
[1] City University of Hong Kong,Department of Computer Science
[2] Shandong University,Department of Mathematics
[3] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Graph; (; , ; )–factorization; Randomly ; –orthogonal factorization; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V (G) and edge set E(G) and let g and f be two integervalued functions defined on V (G) such that 2k – 2 ≤ g(x) ≤ f(x) for all x ∈ V (G). Let H be a subgraph of G with mk edges. In this paper, it is proved that every (mg +m– 1,mf – m + 1)–graph G has (g, f)–factorizations randomly k–orthogonal to H under some special conditions.
引用
收藏
页码:413 / 422
页数:9
相关论文
共 50 条
  • [31] A Generalization of Orthogonal Factorizations in Graphs
    Guo Jun Li
    Gui Zhen Liu
    Acta Mathematica Sinica, 2001, 17 : 669 - 678
  • [32] A Generalization of Orthogonal Factorizations in Graphs
    Guo Jun LI
    Gui Zhen LIU Department of Mathematics and Systems Science
    Acta Mathematica Sinica(English Series), 2001, 17 (04) : 669 - 678
  • [33] Subgraphs with orthogonal factorizations in graphs
    Zhou, Sizhong
    Zhang, Tao
    Xu, Zurun
    DISCRETE APPLIED MATHEMATICS, 2020, 286 (286) : 29 - 34
  • [34] RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf-(m-1)r)-GRAPHS
    Zhou, Sizhong
    Zong, Minggang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (06) : 1613 - 1622
  • [35] A generalization of orthogonal factorizations in graphs
    Li, GJ
    Liu, GZ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (04): : 669 - 678
  • [36] Randomly r-orthogonal (0, f)-factorizations of (0, mf - m
    Zhou, Sizhong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 117 - 126
  • [37] Randomly orthogonal factorizations with constraints in bipartite networks
    Zhou, Sizhong
    Liu, Hongxia
    Zhang, Tao
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 31 - 35
  • [38] Randomly r-Orthogonal (0, f)-Factorizations of Bipartite (0, mf-(m-1)r)-Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2010, 96 : 87 - 96
  • [39] On orthogonal (0, f)-factorizations
    Feng, HD
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (03) : 332 - 336
  • [40] ON ORTHOGONAL (0,f)-FACTORIZATIONS
    冯好娣
    Acta Mathematica Scientia, 1999, (03) : 332 - 336