(g, f)–Factorizations Randomly Orthogonal to a Subgraph in Graphs

被引:0
|
作者
Hao Zhao
Gui Zhen Liu
Xiao Xia Yan
机构
[1] City University of Hong Kong,Department of Computer Science
[2] Shandong University,Department of Mathematics
[3] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Graph; (; , ; )–factorization; Randomly ; –orthogonal factorization; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V (G) and edge set E(G) and let g and f be two integervalued functions defined on V (G) such that 2k – 2 ≤ g(x) ≤ f(x) for all x ∈ V (G). Let H be a subgraph of G with mk edges. In this paper, it is proved that every (mg +m– 1,mf – m + 1)–graph G has (g, f)–factorizations randomly k–orthogonal to H under some special conditions.
引用
收藏
页码:413 / 422
页数:9
相关论文
共 50 条
  • [21] On (g, f)-factorizations of graphs
    Ma, RN
    Gao, HS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (04) : 407 - 410
  • [22] On (g, f)-factorizations of graphs
    Runnian M.
    Hangshan G.
    Applied Mathematics and Mechanics, 1997, 18 (4) : 407 - 410
  • [23] ON(g,f)-FACTORIZATIONS OF GRAPHS
    马润年
    高行山
    AppliedMathematicsandMechanics(EnglishEdition), 1997, (04) : 407 - 410
  • [24] Orthogonal (g, f)-factorizations in networks
    Lam, PCB
    Liu, GZ
    Li, GJ
    Shiu, WC
    NETWORKS, 2000, 35 (04) : 274 - 278
  • [25] Randomly orthogonal factorizations in networks
    Zhou, Sizhong
    Xu, Lan
    Xu, Yang
    CHAOS SOLITONS & FRACTALS, 2016, 93 : 187 - 193
  • [26] Orthogonal factorizations of graphs
    Feng, HD
    Liu, GZ
    JOURNAL OF GRAPH THEORY, 2002, 40 (04) : 267 - 276
  • [27] Orthogonal factorizations of graphs
    Li, GJ
    Chen, CP
    Yu, G
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 173 - 194
  • [28] Existence of subgraph with orthogonal (g,f)-factorization
    Yan, GY
    Pan, JF
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (01): : 48 - 54
  • [29] Existence of subgraph with orthogonal (g,f)-factorization
    Yan Guiying
    Pan Jiaofeng
    Science in China Series A: Mathematics, 1998, 41 (1): : 48 - 54
  • [30] Existence of subgraph with orthogonal (g,f)-factorization
    闫桂英
    潘教峰
    Science China Mathematics, 1998, (01) : 48 - 54