Foliations by complex curves and the geometry of real surfaces of finite type

被引:0
|
作者
A. Tumanov
机构
[1] Department of Mathematics,
[2] University of Illinois,undefined
[3] Urbana,undefined
[4] IL 61801,undefined
[5] USA (e-mail: tumanov@math.uiuc.edu) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 240卷
关键词
Finite Type; Real Surface; Analytic Manifold; Levi Form; Complex Curf;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if the Levi form of a smooth CR manifold is de-generate in every conormal direction, then on a dense open set, the manifold is foliated by complex curves. As a consequence we show that every real analytic manifold of finite D'Angelo type can be stratified so that each stratum locally is contained in a Levi nondegenerate hypersurface.
引用
收藏
页码:385 / 388
页数:3
相关论文
共 50 条
  • [41] Complex geometry and real geometry
    YU Yanlin ZHU Lin FENG Xiuhong Department of Mathematics Suzhou University Suzhou China
    ScienceinChina,SerA., 2005, Ser.A.2005(S1) (S1) : 206 - 216
  • [42] Complex geometry and real geometry
    YU Yanlin
    Science China Mathematics, 2005, (S1) : 206 - 216
  • [43] Complex geometry and real geometry
    Yanlin Yu
    Lin Zhu
    Xiuhong Feng
    Science in China Series A: Mathematics, 2005, 48 : 206 - 216
  • [44] LIPSCHITZ GEOMETRY OF COMPLEX CURVES
    Neumann, Walter D.
    Pichon, Anne
    JOURNAL OF SINGULARITIES, 2014, 10 : 225 - 234
  • [45] Cubic Curves, Finite Geometry and Cryptography
    A. A. Bruen
    J. W. P. Hirschfeld
    D. L. Wehlau
    Acta Applicandae Mathematicae, 2011, 115 : 265 - 278
  • [46] Cubic Curves, Finite Geometry and Cryptography
    Bruen, A. A.
    Hirschfeld, J. W. P.
    Wehlau, D. L.
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (03) : 265 - 278
  • [47] Finite type Monge-Ampere foliations
    Kalka, Morris
    Patrizio, Giorgio
    ADVANCES IN GEOMETRY, 2008, 8 (04) : 491 - 502
  • [48] CLASSIFICATION OF FLAT PENCILS OF FOLIATIONS ON COMPACT COMPLEX SURFACES
    Puchuri, Liliana
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (05) : 2191 - 2214
  • [49] Topology and Complex Structures of Leaves of Foliations by Riemann Surfaces
    Sibony, Nessim
    Wold, Erlend Fornaess
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2593 - 2614
  • [50] Topology and Complex Structures of Leaves of Foliations by Riemann Surfaces
    Nessim Sibony
    Erlend Fornæss Wold
    The Journal of Geometric Analysis, 2020, 30 : 2593 - 2614