Foliations by complex curves and the geometry of real surfaces of finite type
被引:0
|
作者:
A. Tumanov
论文数: 0引用数: 0
h-index: 0
机构:Department of Mathematics,
A. Tumanov
机构:
[1] Department of Mathematics,
[2] University of Illinois,undefined
[3] Urbana,undefined
[4] IL 61801,undefined
[5] USA (e-mail: tumanov@math.uiuc.edu)
,undefined
来源:
Mathematische Zeitschrift
|
2002年
/
240卷
关键词:
Finite Type;
Real Surface;
Analytic Manifold;
Levi Form;
Complex Curf;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that if the Levi form of a smooth CR manifold is de-generate in every conormal direction, then on a dense open set, the manifold is foliated by complex curves. As a consequence we show that every real analytic manifold of finite D'Angelo type can be stratified so that each stratum locally is contained in a Levi nondegenerate hypersurface.