AFM detection of the mechanical resonances of coiled carbon nanotubes

被引:1
|
作者
A. Volodin
C. Van Haesendonck
R. Tarkiainen
M. Ahlskog
A. Fonseca
J.B. Nagy
机构
[1] Laboratorium voor Vaste-Stoffysica en Magnetisme,
[2] Katholieke Universiteit Leuven,undefined
[3] 3001 Leuven,undefined
[4] Belgium,undefined
[5] Low Temperature Laboratory,undefined
[6] Helsinki University of Technology,undefined
[7] 02015 Espoo,undefined
[8] Finland,undefined
[9] Laboratoire de Résonance Magnétique Nucléaire,undefined
[10] Facultés Universitaires Notre-Dame de la Paix,undefined
[11] 5000 Namur,undefined
[12] Belgium,undefined
来源
Applied Physics A | 2001年 / 72卷
关键词
PACS: 61.16.Ch; 61.48.+c;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a method for atomic force microscopy (AFM)-based detection of mechanical resonances in helix-shaped multi-walled carbon nanotubes. After deposition on an oxidized silicon substrate, the three-dimensional structure of suspended nanotubes, which bridges an artificially created step on the surface, can be visualized using AFM operating in the non-contact mode. The suspended coiled nanotubes are resonantly excited, in situ, at the fundamental frequency by an ultrasonic transducer connected to the substrate. When the AFM tip is positioned above the coiled nanotube, the cantilever is unable to follow the fast nanotube oscillations. Nevertheless, an oscillation amplitude-dependent signal is generated due to the non-linear force-to-distance dependence. Measurement of the mechanical resonances of the helix-shaped carbon nanotubes can be used to quantitatively determine their elastic properties. Assuming that a coiled nanotube can be modeled as a suspended helix-shaped uniformly thin elastic beam, the obtained resonance frequency is consistent with a Young’s modulus of 0.17±0.05 TPa.
引用
收藏
页码:S75 / S78
相关论文
共 50 条
  • [31] Electronic Band Structure of Coiled Carbon Nanotubes
    Milosevic, I.
    Damnjanovic, M.
    ACTA PHYSICA POLONICA A, 2011, 120 (02) : 221 - 223
  • [32] Superior electrical and mechanical characteristics observed through the incorporation of coiled carbon nanotubes, in comparison to non-coiled forms, in polymers
    Park, S. -H.
    Yun, D. -J.
    Theilmann, P.
    Bandaru, P. R.
    POLYMER, 2013, 54 (04) : 1318 - 1322
  • [33] Batch fabrication of carbon nanotubes at AFM probe tips and AFM imaging
    Takagahara, Kazuhiko
    Takei, Yusuke
    Iwase, Eiji
    Matsumoto, Kiyoshi
    Shimoyama, Isao
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 713 - 716
  • [34] Nanotribology by AFM on multiwall carbon nanotubes.
    Decossas, S
    Bonnot, AM
    Patrone, L
    Comin, F
    Chevrier, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U352 - U353
  • [35] Anisotropy of thermal expansion of helically coiled carbon nanotubes
    Popovic, Zoran P.
    Damnjanovic, Milan
    Milosevic, Ivanka
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (12): : 2535 - 2538
  • [36] Synthesis, Model and Stability of Helically Coiled Carbon Nanotubes
    Fejes, Dora
    Popovic, Zoran P.
    Raffai, Manuella
    Balogh, Zoltan
    Damnjanovic, Milan
    Milosevic, Ivanka
    Hernadi, Klara
    ECS SOLID STATE LETTERS, 2013, 2 (03) : M21 - M23
  • [37] Growth and microstructure of catalytically produced coiled carbon nanotubes
    Hernadi, K
    Thiên-Nga, L
    Forró, L
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (50): : 12464 - 12468
  • [38] A Review of the Properties and CVD Synthesis of Coiled Carbon Nanotubes
    Fejes, Dora
    Hernadi, Klara
    MATERIALS, 2010, 3 (04) : 2618 - 2642
  • [39] Molecular structural mechanics applied to coiled carbon nanotubes
    Ghaderi, Seyed Hadi
    Hajiesmaili, Ehsan
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 55 : 344 - 349
  • [40] Optical properties of coiled carbon nanotubes: A simple model
    Milosevic, Ivanka
    Popovic, Zoran
    Dmitrovic, Sasa
    Damnjanovic, Milan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (11): : 2585 - 2588