AFM detection of the mechanical resonances of coiled carbon nanotubes

被引:1
|
作者
A. Volodin
C. Van Haesendonck
R. Tarkiainen
M. Ahlskog
A. Fonseca
J.B. Nagy
机构
[1] Laboratorium voor Vaste-Stoffysica en Magnetisme,
[2] Katholieke Universiteit Leuven,undefined
[3] 3001 Leuven,undefined
[4] Belgium,undefined
[5] Low Temperature Laboratory,undefined
[6] Helsinki University of Technology,undefined
[7] 02015 Espoo,undefined
[8] Finland,undefined
[9] Laboratoire de Résonance Magnétique Nucléaire,undefined
[10] Facultés Universitaires Notre-Dame de la Paix,undefined
[11] 5000 Namur,undefined
[12] Belgium,undefined
来源
Applied Physics A | 2001年 / 72卷
关键词
PACS: 61.16.Ch; 61.48.+c;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a method for atomic force microscopy (AFM)-based detection of mechanical resonances in helix-shaped multi-walled carbon nanotubes. After deposition on an oxidized silicon substrate, the three-dimensional structure of suspended nanotubes, which bridges an artificially created step on the surface, can be visualized using AFM operating in the non-contact mode. The suspended coiled nanotubes are resonantly excited, in situ, at the fundamental frequency by an ultrasonic transducer connected to the substrate. When the AFM tip is positioned above the coiled nanotube, the cantilever is unable to follow the fast nanotube oscillations. Nevertheless, an oscillation amplitude-dependent signal is generated due to the non-linear force-to-distance dependence. Measurement of the mechanical resonances of the helix-shaped carbon nanotubes can be used to quantitatively determine their elastic properties. Assuming that a coiled nanotube can be modeled as a suspended helix-shaped uniformly thin elastic beam, the obtained resonance frequency is consistent with a Young’s modulus of 0.17±0.05 TPa.
引用
收藏
页码:S75 / S78
相关论文
共 50 条
  • [21] Collective resonances in carbon nanotubes
    Vasvari, B
    PHYSICAL REVIEW B, 1997, 55 (12): : 7993 - 8003
  • [22] Unraveling the effect of hydrogenation on the mechanical properties of coiled carbon nanotubes: a molecular dynamics study
    Saray, Mahdi Azhari
    Baghani, Mostafa
    Rajabpour, Ali
    Sharifian, Ali
    Baniassadi, Majid
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (23) : 15988 - 16000
  • [23] The Controllable Mechanical Properties of Coiled Carbon Nanotubes with Stone-Wales and Vacancy Defects
    Bie, Zhiwu
    Deng, Yajie
    Liu, Xuefeng
    Zhu, Jiaqi
    Tao, Jixiao
    Shi, Xian
    He, Xiaoqiao
    NANOMATERIALS, 2023, 13 (19)
  • [24] Modeling and Analysis of the Geometry-Dependent Mechanical and Thermal Properties of Coiled Carbon Nanotubes
    Chen, Yan
    Qin, Huasong
    Liu, Yilun
    Pei, Qing-Xiang
    Zhang, Yong-Wei
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (03):
  • [25] From straight carbon nanotubes to Y-branched and coiled carbon nanotubes
    Biró, LP
    Ehlich, R
    Osváth, Z
    Koós, A
    Horváth, ZE
    Gyulai, J
    Nagy, JB
    DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) : 1081 - 1085
  • [26] Coiled carbon nanotubes: their structural and electrical properties
    Xie, JN
    Mukhopadyay, K
    Yadev, J
    Varadan, VK
    SMART STRUCTURES AND MATERIALS 2003: SMART ELECTRONICS, MEMS, BIOMEMS, AND NANOTECHNOLOGY, 2003, 5055 : 223 - 229
  • [27] On the structural rules of helically coiled carbon nanotubes
    Chuang, Chern
    Fan, Yuan-Chia
    Jin, Bih-Yaw
    JOURNAL OF MOLECULAR STRUCTURE, 2012, 1008 : 1 - 7
  • [28] Phonon transport in helically coiled carbon nanotubes
    Popovic, Zoran P.
    Damnjanovic, Milan
    Milosevic, Ivanka
    CARBON, 2014, 77 : 281 - 288
  • [29] Structural origin of coiling in coiled carbon nanotubes
    Szabó, A
    Fonseca, A
    Nagy, JB
    Lambin, P
    Biró, LP
    CARBON, 2005, 43 (08) : 1628 - 1633
  • [30] Synthesis, Characterisation and Applications of Coiled Carbon Nanotubes
    Hanus, Monica J.
    Harris, Andrew I.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (04) : 2261 - 2283