We study minimizers of the energy functional
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\int\limits_{D} [|\nabla u|^2+ \lambda(u^+)^p]\,{\rm d}x$$\end{document}for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${p\in (0,1)}$$\end{document} without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma^+=\partial\{u>0\}\cap D}$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma^-=\partial\{u<0\}\cap D}$$\end{document} are C1,α-regular, provided \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${1-\epsilon_0<p<1}$$\end{document} . The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy.
机构:
Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USAOhio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
Chen, Duan
Friedman, Avner
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
Ohio State Univ, Dept Math, Columbus, OH 43210 USAOhio State Univ, Math Biosci Inst, Columbus, OH 43210 USA