Two-phase semilinear free boundary problem with a degenerate phase

被引:0
|
作者
Norayr Matevosyan
Arshak Petrosyan
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
[2] Purdue University,Department of Mathematics
关键词
Primary 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We study minimizers of the energy functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int\limits_{D} [|\nabla u|^2+ \lambda(u^+)^p]\,{\rm d}x$$\end{document}for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in (0,1)}$$\end{document} without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma^+=\partial\{u>0\}\cap D}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma^-=\partial\{u<0\}\cap D}$$\end{document} are C1,α-regular, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1-\epsilon_0<p<1}$$\end{document} . The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy.
引用
收藏
页码:397 / 411
页数:14
相关论文
共 50 条
  • [21] SEPARATION OF A LOWER DIMENSIONAL FREE BOUNDARY IN A TWO-PHASE PROBLEM
    Allen, Mark
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) : 1055 - 1074
  • [22] Two-phase almost minimizers for a fractional free boundary problem
    Mark Allen
    Mariana Smit Vega Garcia
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [23] On monotonicity conditions for the free boundary in the two-phase Stefan problem
    Petrova, A. G.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 789 - 791
  • [24] A two-phase free boundary problem for the nonlinear heat equation
    Lillo S.D.
    Salvatori M.C.
    Journal of Nonlinear Mathematical Physics, 2004, 11 (1) : 134 - 140
  • [25] A bifurcation phenomenon in a singularly perturbed two-phase free boundary problem of phase transition
    Charro, Fernando
    Ali, Alaa Haj
    Raihen, Nurul
    Torres, Monica
    Wang, Peiyong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [26] On the two-phase free boundary problem for two-dimensional water waves
    Iguchi, T
    Tanaka, N
    Tani, A
    MATHEMATISCHE ANNALEN, 1997, 309 (02) : 199 - 223
  • [27] On the two-phase free boundary problem for two-dimensional water waves
    Tatsuo Iguchi
    Naoto Tanaka
    Atusi Tani
    Mathematische Annalen, 1997, 309 : 199 - 223
  • [28] SOME FREE BOUNDARY PROBLEM FOR TWO-PHASE INHOMOGENEOUS INCOMPRESSIBLE FLOWS
    Saito, Hirokazu
    Shibata, Yoshihiro
    Zhang, Xin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3397 - 3443
  • [29] A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE AND UNIFORM RECTIFIABILITY
    Azzam, Jonas
    Mourgoglou, Mihalis
    Tolsa, Xavier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 4359 - 4388
  • [30] On a Weighted Two-Phase Boundary Obstacle Problem
    Danielli, Donatella
    Ognibene, R. oberto
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (04) : 1627 - 1666