Two-phase semilinear free boundary problem with a degenerate phase

被引:0
|
作者
Norayr Matevosyan
Arshak Petrosyan
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
[2] Purdue University,Department of Mathematics
关键词
Primary 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We study minimizers of the energy functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int\limits_{D} [|\nabla u|^2+ \lambda(u^+)^p]\,{\rm d}x$$\end{document}for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in (0,1)}$$\end{document} without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma^+=\partial\{u>0\}\cap D}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma^-=\partial\{u<0\}\cap D}$$\end{document} are C1,α-regular, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1-\epsilon_0<p<1}$$\end{document} . The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy.
引用
收藏
页码:397 / 411
页数:14
相关论文
共 50 条
  • [1] Two-phase semilinear free boundary problem with a degenerate phase
    Matevosyan, Norayr
    Petrosyan, Arshak
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) : 397 - 411
  • [3] Regularity of the Free Boundary in a Two-phase Semilinear Problem in Two Dimensions
    Lindgren, Erik
    Petrosyan, Arshak
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3397 - 3417
  • [4] On a two-phase free boundary problem
    Ablowitz, MJ
    De Lillo, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (15): : 4307 - 4319
  • [5] Regularity for degenerate two-phase free boundary problems
    Leitao, Raimundo
    de Queiroz, Olivaine S.
    Teixeira, Eduardo V.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 741 - 762
  • [6] Regularity of the free boundary for the two-phase Bernoulli problem
    Guido De Philippis
    Luca Spolaor
    Bozhidar Velichkov
    Inventiones mathematicae, 2021, 225 : 347 - 394
  • [7] Regularity of the free boundary for the two-phase Bernoulli problem
    De Philippis, Guido
    Spolaor, Luca
    Velichkov, Bozhidar
    INVENTIONES MATHEMATICAE, 2021, 225 (02) : 347 - 394
  • [8] On the uniqueness of a solution of a two-phase free boundary problem
    Lu, Guozhen
    Wang, Peiyong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2817 - 2833
  • [9] A TWO-PHASE PROBLEM WITH ROBIN CONDITIONS ON THE FREE BOUNDARY
    Lo Bianco, Serena Guarino
    La Manna, Domenico Angelo
    Velichkov, Bozhidar
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 1 - 25
  • [10] A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE
    Engelstein, Max
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (04): : 859 - 905