PLS Path modelling: computation of latent variables with the estimation mode B

被引:0
|
作者
Mohamed Hanafi
机构
[1] Unité de Sensometrie et Chimiometrie,ENITIAA
来源
Computational Statistics | 2007年 / 22卷
关键词
Path modelling; Latent variables; Structural modelling; Covariance structure; Monotonically Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
PLS Path modelling has several interesting advantages compared to other existing approaches traditionally used for structural modelling. However, the lack of convergence properties of the existing iterative procedures for the computation of the latent variables, has always been considered as a major drawback. The convergence is stated only in practice. The present paper shows that when the estimation mode B is chosen for all blocks, the iterative procedure for the computation of latent variables proposed by Wold (in Encyclopaedia of statistical sciences, vol 6. Wiley, New York, pp. 581–591, 1985) is monotonically convergent.
引用
收藏
页码:275 / 292
页数:17
相关论文
共 50 条
  • [21] Financial Impacts and antecedents of CSR: a PLS Path Modelling Approach
    Sahut, Jean-michel
    Mili, Medhi
    Ben Tekaya, Sana
    Teulon, Frederic
    ECONOMICS BULLETIN, 2016, 36 (02): : 736 - +
  • [22] Role and Treatment of Categorical Variables in PLS Path Models for Composite Indicators
    Trinchera, Laura
    Russolillo, Giorgio
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 23 - 27
  • [23] Selecting both latent and explanatory variables in the PLS1 regression model
    Lazraq, A
    Cléroux, R
    Gauchi, JP
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 66 (02) : 117 - 126
  • [25] Mode choice modelling of work trips using latent variables for a medium-sized city in India
    Shaheem, S.
    Sreelekshmi, S.
    Radhakrishnan, Nisha
    Anjaneyulu, M. V. L. R.
    Mathew, Samson
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2024, 47 (07) : 1068 - 1091
  • [26] Estimation of a regression function corresponding to latent variables
    Kohler, Michael
    Mueller, Florian
    Walk, Harro
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 162 : 88 - 109
  • [27] Intervention Target Estimation in the Presence of Latent Variables
    Varici, Burak
    Shanmugam, Karthikeyan
    Sattigeri, Prasanna
    Tajer, Ali
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2013 - 2023
  • [28] REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling
    Vinzi, V. Esposito
    Trinchera, L.
    Squillacciotti, S.
    Tenenhaus, M.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2008, 24 (05) : 439 - 458
  • [29] Projection to latent pathways (PLP): a constrained projection to latent variables (PLS) method for elementary flux modes discrimination
    Ferreira, Ana R.
    Dias, Joao M. L.
    Teixeira, Ana P.
    Carinhas, Nuno
    Portela, Rui M. C.
    Isidro, Ines A.
    von Stosch, Moritz
    Oliveira, Rui
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [30] Determinants of App Stores Continuance Behavior: A PLS Path Modelling Approach
    Rezaei, Sajad
    Shahijan, Milad Kalantari
    Amin, Muslim
    Ismail, Wan Khairuzzaman Wan
    JOURNAL OF INTERNET COMMERCE, 2016, 15 (04) : 408 - 440