PLS Path modelling: computation of latent variables with the estimation mode B

被引:0
|
作者
Mohamed Hanafi
机构
[1] Unité de Sensometrie et Chimiometrie,ENITIAA
来源
Computational Statistics | 2007年 / 22卷
关键词
Path modelling; Latent variables; Structural modelling; Covariance structure; Monotonically Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
PLS Path modelling has several interesting advantages compared to other existing approaches traditionally used for structural modelling. However, the lack of convergence properties of the existing iterative procedures for the computation of the latent variables, has always been considered as a major drawback. The convergence is stated only in practice. The present paper shows that when the estimation mode B is chosen for all blocks, the iterative procedure for the computation of latent variables proposed by Wold (in Encyclopaedia of statistical sciences, vol 6. Wiley, New York, pp. 581–591, 1985) is monotonically convergent.
引用
收藏
页码:275 / 292
页数:17
相关论文
共 50 条
  • [11] On Components, Latent Variables, PLS and Simple Methods: Reactions to Rigdon's Rethinking of PLS
    Bentler, Peter M.
    Huang, Wenjing
    LONG RANGE PLANNING, 2014, 47 (03) : 138 - 145
  • [12] Overcoming convergence problems in PLS path modelling
    Hanafi, Mohamed
    El Hadri, Zouhair
    Sahli, Abderrahim
    Dolce, Pasquale
    COMPUTATIONAL STATISTICS, 2022, 37 (05) : 2437 - 2470
  • [13] Overcoming convergence problems in PLS path modelling
    Mohamed Hanafi
    Zouhair El Hadri
    Abderrahim Sahli
    Pasquale Dolce
    Computational Statistics, 2022, 37 : 2437 - 2470
  • [14] PLS Pluses and Minuses In Path Estimation Accuracy
    Goodhue, Dale
    Lewis, William
    Thompson, Ron
    AMCIS 2015 PROCEEDINGS, 2015,
  • [15] Modelling using manifest and latent variables
    Willems, JC
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 197 - 198
  • [16] SO-PLS as an exploratory tool for path modelling
    Menichelli, Elena
    Almoy, Trygve
    Tomic, Oliver
    Olsen, Nina Veflen
    Naes, Tormod
    FOOD QUALITY AND PREFERENCE, 2014, 36 : 122 - 134
  • [17] Testing moderating effects in PLS path models with composite variables
    Fassott, Georg
    Henseler, Jorg
    Coelho, Pedro S.
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2016, 116 (09) : 1887 - 1900
  • [18] PLS Path Modeling with Mode C Computational Experiments
    Martinez-Ruiz, Alba
    Aluja-Banet, Tomas
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL III, 2010, : 1987 - 1992
  • [19] The estimation of normal mixtures with latent variables
    Magnus, Gideon
    Magnus, Jan R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (05) : 1255 - 1269
  • [20] Modelling Covariances and Latent Variables Using EQS
    Hershberger, Scott L.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1996, 3 (01) : 84 - 86