On the convergence of conjugate direction algorithm for solving coupled Sylvester matrix equations

被引:0
|
作者
Masoud Hajarian
机构
[1] Shahid Beheshti University,Department of Mathematics, Faculty of Mathematical Sciences
来源
关键词
MCD method; Sylvester matrix equation; Conjugate direction method; Finite number of iterations; 15A24; 39B42; 65F10; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we obtain the matrix form of the conjugate direction (MCD) method for solving the coupled Sylvester matrix equations (CSMEs)∑i=1sAiXBi=C,∑j=1tDjXEj=F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{ll} \sum _{i=1}^s A_iXB_i=C, &{} \hbox {} \\ \sum _{j=1}^t D_jXE_j=F, &{} \hbox {} \end{array}\right. $$\end{document}which are defined in the domain of real numbers. We prove that the MCD method converges to the solution of the CSMEs for any initial guess within a finite number of iterations in the absence of round-off errors. Also we show that the MCD method can find the least Frobenius norm solution of the CSMEs with special initial guess. Finally three numerical examples show that the MCD method is efficient to solve some matrix equations.
引用
收藏
页码:3077 / 3092
页数:15
相关论文
共 50 条