Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations

被引:4
|
作者
Tansri, Kanjanaporn [1 ]
Choomklang, Sarawanee [1 ]
Chansangiam, Pattrawut [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Sch Sci, Dept Math, Bangkok 10520, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
conjugate gradient agorithm; generalized Sylvester-transpose matrix equation; Kronecker product; matrix norm; orthogonality; EIGENSTRUCTURE ASSIGNMENT; ITERATIVE ALGORITHM; PARAMETER-ESTIMATION; SYSTEMS;
D O I
10.3934/math.2022299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an effective algorithm to find a well-approximate solution of a generalized Sylvester-transpose matrix equation where all coefficient matrices and an unknown matrix are rectangular. The algorithm aims to construct a finite sequence of approximated solutions from any given initial matrix. It turns out that the associated residual matrices are orthogonal, and thus, the desire solution comes out in the final step with a satisfactory error. We provide numerical experiments to show the capability and performance of the algorithm.
引用
收藏
页码:5386 / 5407
页数:22
相关论文
共 50 条