Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram

被引:0
|
作者
Tommaso Biancalani
Gabriele Scalia
Lorenzo Buffoni
Raghav Avasthi
Ziqing Lu
Aman Sanger
Neriman Tokcan
Charles R. Vanderburg
Åsa Segerstolpe
Meng Zhang
Inbal Avraham-Davidi
Sanja Vickovic
Mor Nitzan
Sai Ma
Ayshwarya Subramanian
Michal Lipinski
Jason Buenrostro
Nik Bear Brown
Duccio Fanelli
Xiaowei Zhuang
Evan Z. Macosko
Aviv Regev
机构
[1] Broad Institute of MIT and Harvard,Department of Physics and Astrophysics
[2] University of Florence,Department of Chemistry and Chemical Biology, Department of Physics
[3] Northeastern University,School of Engineering and Applied Sciences
[4] Harvard University,Department of Biology
[5] Harvard University,Department of Stem Cell and Regenerative Biology
[6] MIT,School of Computer Science and Engineering, Racah Institute of Physics, Faculty of Medicine
[7] Harvard University,undefined
[8] Genentech,undefined
[9] Roche,undefined
[10] The Hebrew University,undefined
[11] Howard Hughes Medical Institute,undefined
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Charting an organs’ biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.
引用
收藏
页码:1352 / 1362
页数:10
相关论文
共 50 条
  • [41] A spatially resolved single-cell genomic atlas of the adult human breast
    Kumar, Tapsi
    Nee, Kevin
    Wei, Runmin
    He, Siyuan
    Nguyen, Quy H.
    Bai, Shanshan
    Blake, Kerrigan
    Pein, Maren
    Gong, Yanwen
    Sei, Emi
    Hu, Min
    Casasent, Anna K.
    Thennavan, Aatish
    Li, Jianzhuo
    Tran, Tuan
    Chen, Ken
    Nilges, Benedikt
    Kashikar, Nachiket
    Braubach, Oliver
    Ben Cheikh, Bassem
    Nikulina, Nadya
    Chen, Hui
    Teshome, Mediget
    Menegaz, Brian
    Javaid, Huma
    Nagi, Chandandeep
    Montalvan, Jessica
    Lev, Tatyana
    Mallya, Sharmila
    Tifrea, Delia F.
    Edwards, Robert
    Lin, Erin
    Parajuli, Ritesh
    Hanson, Summer
    Winocour, Sebastian
    Thompson, Alastair
    Lim, Bora
    Lawson, Devon A.
    Kessenbrock, Kai
    Navin, Nicholas
    NATURE, 2023, 620 (7972) : 181 - +
  • [42] Vitessce: integrative visualization of multimodal and spatially resolved single-cell data
    Keller, Mark S.
    Gold, Ilan
    McCallum, Chuck
    Manz, Trevor
    Kharchenko, Peter V.
    Gehlenborg, Nils
    NATURE METHODS, 2024, : 63 - 67
  • [43] Mass spectrometry imaging: the rise of spatially resolved single-cell omics
    Zhang, Hua
    Delafield, Daniel G.
    Li, Lingjun
    NATURE METHODS, 2023, 20 (03) : 327 - 330
  • [44] A spatially resolved single-cell genomic atlas of the adult human breast
    Tapsi Kumar
    Kevin Nee
    Runmin Wei
    Siyuan He
    Quy H. Nguyen
    Shanshan Bai
    Kerrigan Blake
    Maren Pein
    Yanwen Gong
    Emi Sei
    Min Hu
    Anna K. Casasent
    Aatish Thennavan
    Jianzhuo Li
    Tuan Tran
    Ken Chen
    Benedikt Nilges
    Nachiket Kashikar
    Oliver Braubach
    Bassem Ben Cheikh
    Nadya Nikulina
    Hui Chen
    Mediget Teshome
    Brian Menegaz
    Huma Javaid
    Chandandeep Nagi
    Jessica Montalvan
    Tatyana Lev
    Sharmila Mallya
    Delia F. Tifrea
    Robert Edwards
    Erin Lin
    Ritesh Parajuli
    Summer Hanson
    Sebastian Winocour
    Alastair Thompson
    Bora Lim
    Devon A. Lawson
    Kai Kessenbrock
    Nicholas Navin
    Nature, 2023, 620 : 181 - 191
  • [45] Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives
    Dezem, Felipe Segato
    Arjumand, Wani
    DuBose, Hannah
    Morosini, Natalia Silva
    Plummer, Jasmine
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2024, 7 : 131 - 153
  • [46] Bayesian deep learning for single-cell analysis
    Gregory P. Way
    Casey S. Greene
    Nature Methods, 2018, 15 : 1009 - 1010
  • [47] Interpretable deep learning in single-cell omics
    Wagle, Manoj M.
    Long, Siqu
    Chen, Carissa
    Liu, Chunlei
    Yang, Pengyi
    BIOINFORMATICS, 2024, 40 (06)
  • [48] Bayesian deep learning for single-cell analysis
    Way, Gregory P.
    Greene, Casey S.
    NATURE METHODS, 2018, 15 (12) : 1009 - 1010
  • [49] Short talk Nanoscale tweezers for spatially resolved single-cell subcellular analysis
    Sahota, Annie
    Nadappuram, Binoy Paulose
    Devine, Michael
    Ivanov, Aleksandar
    Edel, Joshua
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S31 - S31
  • [50] A SINGLE-CELL SPATIALLY RESOLVED MERFISH MAP OF THE COLORECTAL TUMOR IMMUNE MICROENVIRONMENT
    Price, Colles
    Chen, Jonathan
    Pelka, Karin
    Chao, Sherry
    He, Jiang
    Boland, Genevieve
    Emanuel, George
    Hacohen, Nir
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A965 - A965