Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram

被引:0
|
作者
Tommaso Biancalani
Gabriele Scalia
Lorenzo Buffoni
Raghav Avasthi
Ziqing Lu
Aman Sanger
Neriman Tokcan
Charles R. Vanderburg
Åsa Segerstolpe
Meng Zhang
Inbal Avraham-Davidi
Sanja Vickovic
Mor Nitzan
Sai Ma
Ayshwarya Subramanian
Michal Lipinski
Jason Buenrostro
Nik Bear Brown
Duccio Fanelli
Xiaowei Zhuang
Evan Z. Macosko
Aviv Regev
机构
[1] Broad Institute of MIT and Harvard,Department of Physics and Astrophysics
[2] University of Florence,Department of Chemistry and Chemical Biology, Department of Physics
[3] Northeastern University,School of Engineering and Applied Sciences
[4] Harvard University,Department of Biology
[5] Harvard University,Department of Stem Cell and Regenerative Biology
[6] MIT,School of Computer Science and Engineering, Racah Institute of Physics, Faculty of Medicine
[7] Harvard University,undefined
[8] Genentech,undefined
[9] Roche,undefined
[10] The Hebrew University,undefined
[11] Howard Hughes Medical Institute,undefined
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Charting an organs’ biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.
引用
收藏
页码:1352 / 1362
页数:10
相关论文
共 50 条
  • [21] Single-cell transcriptomes in space
    Linda Koch
    Nature Reviews Genetics, 2018, 19 : 64 - 65
  • [22] Optical Cell Tagging for Spatially Resolved Single-Cell RNA Sequencing
    Tang, Qi
    Liu, Lu
    Guo, Yilan
    Zhang, Xu
    Zhang, Shaoran
    Jia, Yan
    Du, Yifei
    Cheng, Bo
    Yang, Li
    Huang, Yanyi
    Chen, Xing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
  • [23] Batch alignment of single-cell transcriptomics data using deep metric learning
    Yu, Xiaokang
    Xu, Xinyi
    Zhang, Jingxiao
    Li, Xiangjie
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] Batch alignment of single-cell transcriptomics data using deep metric learning
    Xiaokang Yu
    Xinyi Xu
    Jingxiao Zhang
    Xiangjie Li
    Nature Communications, 14
  • [25] Multiplexed laser particles for spatially resolved single-cell analysis
    Kwok, Sheldon J. J.
    Martino, Nicola
    Dannenberg, Paul H.
    Yun, Seok-Hyun
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [26] Multiplexed laser particles for spatially resolved single-cell analysis
    Sheldon J. J. Kwok
    Nicola Martino
    Paul H. Dannenberg
    Seok-Hyun Yun
    Light: Science & Applications, 8
  • [27] A single-cell and spatially resolved atlas of human breast cancers
    Sunny Z. Wu
    Ghamdan Al-Eryani
    Daniel Lee Roden
    Simon Junankar
    Kate Harvey
    Alma Andersson
    Aatish Thennavan
    Chenfei Wang
    James R. Torpy
    Nenad Bartonicek
    Taopeng Wang
    Ludvig Larsson
    Dominik Kaczorowski
    Neil I. Weisenfeld
    Cedric R. Uytingco
    Jennifer G. Chew
    Zachary W. Bent
    Chia-Ling Chan
    Vikkitharan Gnanasambandapillai
    Charles-Antoine Dutertre
    Laurence Gluch
    Mun N. Hui
    Jane Beith
    Andrew Parker
    Elizabeth Robbins
    Davendra Segara
    Caroline Cooper
    Cindy Mak
    Belinda Chan
    Sanjay Warrier
    Florent Ginhoux
    Ewan Millar
    Joseph E. Powell
    Stephen R. Williams
    X. Shirley Liu
    Sandra O’Toole
    Elgene Lim
    Joakim Lundeberg
    Charles M. Perou
    Alexander Swarbrick
    Nature Genetics, 2021, 53 : 1334 - 1347
  • [28] A single-cell and spatially resolved atlas of human breast cancers
    Wu, Sunny Z.
    Al-Eryani, Ghamdan
    Roden, Daniel Lee
    Junankar, Simon
    Harvey, Kate
    Andersson, Alma
    Thennavan, Aatish
    Wang, Chenfei
    Torpy, James R.
    Bartonicek, Nenad
    Wang, Taopeng
    Larsson, Ludvig
    Kaczorowski, Dominik
    Weisenfeld, Neil, I
    Uytingco, Cedric R.
    Chew, Jennifer G.
    Bent, Zachary W.
    Chan, Chia-Ling
    Gnanasambandapillai, Vikkitharan
    Dutertre, Charles-Antoine
    Gluch, Laurence
    Hui, Mun N.
    Beith, Jane
    Parker, Andrew
    Robbins, Elizabeth
    Segara, Davendra
    Cooper, Caroline
    Mak, Cindy
    Chan, Belinda
    Warrier, Sanjay
    Ginhoux, Florent
    Millar, Ewan
    Powell, Joseph E.
    Williams, Stephen R.
    Liu, X. Shirley
    O'Toole, Sandra
    Lim, Elgene
    Lundeberg, Joakim
    Perou, Charles M.
    Swarbrick, Alexander
    NATURE GENETICS, 2021, 53 (09) : 1334 - +
  • [29] SCAR: Single-cell and Spatially-resolved Cancer Resources
    Deng, Yushan
    Chen, Peixin
    Xiao, Jiedan
    Li, Mengrou
    Shen, Jiayi
    Qin, Siying
    Jia, Tengfei
    Li, Changxiao
    Chang, Ashley
    Zhang, Wensheng
    Liu, Hebin
    Xue, Ruidong
    Zhang, Ning
    Wang, Xiangdong
    Huang, Li
    Chen, Dongsheng
    NUCLEIC ACIDS RESEARCH, 2024, 52 (D1) : D1407 - D1417
  • [30] Preface for Special Issue: Single-Cell and Spatially Resolved Omics
    Fan, Xiaohui
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 831 - 832