A family of hyper-Bessel functions and convergent series in them

被引:0
|
作者
Jordanka Paneva-Konovska
机构
[1] Technical University of Sofia,Faculty of Applied Mathematics and Informatics
[2] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
关键词
hyper-Bessel function; hyper-Bessel differential operator; series in hyper-Bessel functions; convergence of series in a complex plane; Primary 40A30, 30D15; Secondary 33E12, 31A20, 30A10;
D O I
暂无
中图分类号
学科分类号
摘要
The Delerue hyper-Bessel functions that appeared as a multi-index generalizations of the Bessel function of the first type, are closely related to the hyper-Bessel differential operators of arbitrary order, introduced by Dimovski. In this work we consider an enumerable family of hyper-Bessel functions and study the convergence of series in such a kind of functions. The obtained results are analogues to the ones in the classical theory of the widely used power series, like Cauchy-Hadamard, Abel and Fatou theorem.
引用
收藏
页码:1001 / 1015
页数:14
相关论文
共 50 条
  • [1] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015
  • [2] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [3] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [4] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    [J]. MATHEMATICS, 2019, 7 (04)
  • [5] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    [J]. The Ramanujan Journal, 2020, 51 : 275 - 295
  • [6] Certain Geometric Properties of Lommel and Hyper-Bessel Functions
    Mushtaq, Saima
    Raza, Mohsan
    Din, Muhey U.
    [J]. MATHEMATICS, 2019, 7 (03)
  • [7] On the zeros of the hyper-Bessel function
    Chaggara, H.
    Ben Romdhane, N.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) : 96 - 101
  • [8] Minimal cyclic random motion in Rn and hyper-Bessel functions
    Lachal, A.
    Leorato, S.
    Orsingher, E.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (06): : 753 - 772
  • [9] GENERALIZED POISSON TRANSMUTATIONS AND CORRESPONDING REPRESENTATIONS OF HYPER-BESSEL FUNCTIONS
    DIMOVSKI, IH
    KIRYAKOVA, VS
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (10): : 29 - 32
  • [10] MULTIDIMENSIONAL GENERATING RELATIONS SUGGESTED BY A GENERATING RELATION FOR HYPER-BESSEL FUNCTIONS
    Pathan, M. A.
    Bin-Saad, Maged G.
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (30): : 101 - 108