Certain Geometric Properties of Lommel and Hyper-Bessel Functions

被引:4
|
作者
Mushtaq, Saima [1 ]
Raza, Mohsan [1 ]
Din, Muhey U. [2 ]
机构
[1] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38000, Pakistan
[2] Govt Post Grad Islamia Coll Faisalabad, Dept Math, Faisalabad 38000, Pakistan
关键词
close-to-convexity; analytic functions; normalized lommel functions; normalized hyper-bessel functions; strongly convexity; strongly starlikeness; CLOSE-TO-CONVEXITY;
D O I
10.3390/math7030240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we are mainly interested in finding the sufficient conditions under which Lommel functions and hyper-Bessel functions are close-to-convex with respect to the certain starlike functions. Strongly starlikeness and convexity of Lommel functions and hyper-Bessel functions are also discussed. Some applications are also the part of our investigation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [2] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    [J]. MATHEMATICS, 2019, 7 (04)
  • [3] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    [J]. The Ramanujan Journal, 2020, 51 : 275 - 295
  • [4] CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION
    Aktas, Ibrahim
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 179 - 186
  • [5] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [6] CERTAIN GEOMETRIC PROPERTIES OF MODIFIED LOMMEL FUNCTIONS
    Din, Muhey U.
    Yalcin, Sibel
    [J]. HONAM MATHEMATICAL JOURNAL, 2020, 42 (04): : 719 - 731
  • [7] CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION
    Kim, Yongsup
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 523 - 532
  • [8] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [9] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015
  • [10] Certain geometric properties of normalized Bessel functions
    Prajapat, J. K.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2133 - 2139