On Geometric Properties of Normalized Hyper-Bessel Functions

被引:1
|
作者
Ahmad, Khurshid [1 ]
Mustafa, Saima [2 ]
Din, Muhey U. [3 ]
Rehman, Shafiq Ur [4 ]
Raza, Mohsan [5 ]
Arif, Muhammad [1 ]
机构
[1] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan
[2] PMAS Arid Agr Univ, Dept Math, Rawalpindi 46000, Pakistan
[3] Islamia Coll Faisalabad, Dept Math, Faisalabad 38000, Pakistan
[4] COMSATS Univ Islamabad, Dept Math, Attock 43600, Pakistan
[5] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38000, Pakistan
关键词
univalent functions; starlikeness; convexity; close-to-convexity; hyper-Bessel functions; Hardy space; Primary; 30C45; 33C10; Secondary; 30C20; 30C75; CONVEXITY;
D O I
10.3390/math7040316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the normalized hyper-Bessel functions are studied. Certain sufficient conditions are determined such that the hyper-Bessel functions are close-to-convex, starlike and convex in the open unit disc. We also study the Hardy spaces of hyper-Bessel functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION
    Aktas, Ibrahim
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 179 - 186
  • [2] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [3] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    [J]. The Ramanujan Journal, 2020, 51 : 275 - 295
  • [4] Certain Geometric Properties of Lommel and Hyper-Bessel Functions
    Mushtaq, Saima
    Raza, Mohsan
    Din, Muhey U.
    [J]. MATHEMATICS, 2019, 7 (03)
  • [5] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [6] Certain geometric properties of normalized Bessel functions
    Prajapat, J. K.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2133 - 2139
  • [7] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [8] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015
  • [9] On the zeros of the hyper-Bessel function
    Chaggara, H.
    Ben Romdhane, N.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) : 96 - 101
  • [10] Minimal cyclic random motion in Rn and hyper-Bessel functions
    Lachal, A.
    Leorato, S.
    Orsingher, E.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (06): : 753 - 772