In situ interface engineering for probing the limit of quantum dot photovoltaic devices

被引:0
|
作者
Hui Dong
Feng Xu
Ziqi Sun
Xing Wu
Qiubo Zhang
Yusheng Zhai
Xiao Dong Tan
Longbing He
Tao Xu
Ze Zhang
Xiangfeng Duan
Litao Sun
机构
[1] Southeast University,SEU
[2] Queensland University of Technology,FEI Nano
[3] Gardens Point,Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System
[4] East China Normal University,School of Chemistry, Physics and Mechanical Engineering
[5] Southeast University,Department of Electrical Engineering
[6] Zhejiang University,Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering
[7] California NanoSystems Institute,Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials
[8] University of California,Department of Chemistry and Biochemistry
[9] Southeast University–Monash University Joint Research Institute,Key Laboratory of Welding Robot and Application Technology of Hunan Province, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education
[10] Xiangtan University,undefined
来源
Nature Nanotechnology | 2019年 / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust ‘nanolab’ platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells.
引用
收藏
页码:950 / 956
页数:6
相关论文
共 50 条
  • [21] Island-Cap Interface Misfit Modulated Carrier Mechanisms in p-i-n Epitaxial Quantum Dot Photovoltaic Devices
    Gandhi, Jateen S.
    Kim, Choong-Un
    Kirk, Wiley P.
    2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2013, : 281 - 283
  • [22] Investigation on Stability of Halide Treated PbSe Quantum Dot Thin Films for Photovoltaic Devices
    Zhang, Zhilong
    Patterson, Robert
    Shrestha, Santosh
    Conibeer, Gavin
    Huang, Shujuan
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [23] Addressing Safety Issues in Development of Quantum Dot Incorporated EVA Lamination of Photovoltaic Devices
    Sadeghimakki, Bahareh
    Zheng, Yaxin
    Tarighat, Roohollah S.
    Brunning, Jacob A. L.
    Ghosh, Hrilina
    Sivoththaman, Siva
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 2143 - 2149
  • [24] Probing an exciton in a single quantum dot
    Bayer, M.
    Stern, O.
    Forchel, A.
    Hawrylak, P.
    Fafard, S.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000, : 30 - 31
  • [25] The Dominant Role of Exciton Quenching in PbS Quantum-Dot-Based Photovoltaic Devices
    Wanger, Darcy D.
    Correa, Raoul E.
    Dauler, Eric A.
    Bawendi, Moungi G.
    NANO LETTERS, 2013, 13 (12) : 5907 - 5912
  • [26] How does energy filtering improve quantum-dot based photovoltaic devices
    Michelini, F.
    Crepieux, A.
    Gibelli, F.
    Guillemoles, J. -F.
    Cavassilas, N.
    Whitney, R.
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [27] Photovoltaic Devices Based on Quantum Dot Functionalized Nanowire Arrays Embedded in an Organic Matrix
    Kung, Patrick
    Harris, Nicholas
    Shen, Gang
    Wilbert, David S.
    Baughman, William
    Balci, Soner
    Dawahre, Nabil
    Butler, Lee
    Rivera, Elmer
    Nikles, David
    Kim, Seongsin M.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [28] Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices
    Tang, Xin
    Ackerman, Matthew M.
    Guyot-Sionnest, Philippe
    ACS NANO, 2018, 12 (07) : 7362 - 7370
  • [29] 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
    Jixian Xu
    Oleksandr Voznyy
    Mengxia Liu
    Ahmad R. Kirmani
    Grant Walters
    Rahim Munir
    Maged Abdelsamie
    Andrew H. Proppe
    Amrita Sarkar
    F. Pelayo García de Arquer
    Mingyang Wei
    Bin Sun
    Min Liu
    Olivier Ouellette
    Rafael Quintero-Bermudez
    Jie Li
    James Fan
    Lina Quan
    Petar Todorovic
    Hairen Tan
    Sjoerd Hoogland
    Shana O. Kelley
    Morgan Stefik
    Aram Amassian
    Edward H. Sargent
    Nature Nanotechnology, 2018, 13 : 456 - 462
  • [30] 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
    Xu, Jixian
    Voznyy, Oleksandr
    Liu, Mengxia
    Kirmani, Ahmad R.
    Walters, Grant
    Munir, Rahim
    Abdelsamie, Maged
    Proppe, Andrew H.
    Sarkar, Amrita
    de Arquer, F. Pelayo Garcia
    Wei, Mingyang
    Sun, Bin
    Liu, Min
    Ouellette, Olivier
    Quintero-Bermudez, Rafael
    Li, Jie
    Fan, James
    Quan, Lina
    Todorovic, Petar
    Tan, Hairen
    Hoogland, Sjoerd
    Kelley, Shana O.
    Stefik, Morgan
    Amassian, Aram
    Sargent, Edward H.
    NATURE NANOTECHNOLOGY, 2018, 13 (06) : 456 - +