2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

被引:270
|
作者
Xu, Jixian [1 ]
Voznyy, Oleksandr [1 ]
Liu, Mengxia [1 ]
Kirmani, Ahmad R. [2 ,3 ]
Walters, Grant [1 ]
Munir, Rahim [2 ,3 ]
Abdelsamie, Maged [2 ,3 ]
Proppe, Andrew H. [1 ,4 ]
Sarkar, Amrita [5 ]
de Arquer, F. Pelayo Garcia [1 ]
Wei, Mingyang [1 ]
Sun, Bin [1 ]
Liu, Min [1 ,6 ]
Ouellette, Olivier [1 ]
Quintero-Bermudez, Rafael [1 ]
Li, Jie [1 ]
Fan, James [1 ]
Quan, Lina [1 ]
Todorovic, Petar [1 ]
Tan, Hairen [1 ]
Hoogland, Sjoerd [1 ]
Kelley, Shana O. [4 ,7 ]
Stefik, Morgan [5 ]
Amassian, Aram [2 ,3 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] KAUST, KSC, Thuwal, Saudi Arabia
[3] KAUST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[4] Univ Toronto, Dept Chem, Toronto, ON, Canada
[5] Univ South Carolina, Dept Chem & Biochem, Columbia, SC USA
[6] Cent S Univ, Inst Super Microstruct & Ultrafast Proc Adv Mat, Sch Phys & Elect, Changsha, Hunan, Peoples R China
[7] Univ Toronto, Leslie Dan Fac Pharm, Dept Pharmaceut Sci, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CHARGE-CARRIER DIFFUSION; SOLAR-CELLS; NANOCRYSTALS; FILMS; PASSIVATION; PBI2; BIEXCITONS; TRANSPORT; LIGANDS; TRIONS;
D O I
10.1038/s41565-018-0117-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size(1,2). Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon(3). Advances in surface passivation(2,4-7), combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016(9). Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to similar to 300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in shortcircuit current (J(SC)) and open-circuit voltage (V-OC), as seen in previous reports(3,9-11). Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (similar to 600 nm) and record values of J(SC) (32 mA cm(-2)) are fabricated. The V-OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
引用
收藏
页码:456 / +
页数:8
相关论文
共 50 条
  • [1] 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
    Jixian Xu
    Oleksandr Voznyy
    Mengxia Liu
    Ahmad R. Kirmani
    Grant Walters
    Rahim Munir
    Maged Abdelsamie
    Andrew H. Proppe
    Amrita Sarkar
    F. Pelayo García de Arquer
    Mingyang Wei
    Bin Sun
    Min Liu
    Olivier Ouellette
    Rafael Quintero-Bermudez
    Jie Li
    James Fan
    Lina Quan
    Petar Todorovic
    Hairen Tan
    Sjoerd Hoogland
    Shana O. Kelley
    Morgan Stefik
    Aram Amassian
    Edward H. Sargent
    Nature Nanotechnology, 2018, 13 : 456 - 462
  • [2] Matrix engineering of quantum dot solids
    Law, Matt
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [3] New matrix engineering strategies for efficient charge transport in quantum dot solids
    Law, Matt
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [4] Wigner molecule in a 2D quantum dot
    Akman, N.
    Tomak, M.
    Physica E: Low-Dimensional Systems and Nanostructures, 1999, 4 (04): : 277 - 285
  • [5] Interacting electrons in a 2D quantum dot
    Akman, N
    Tomak, M
    PHYSICA B, 1999, 262 (3-4): : 317 - 321
  • [6] The Wigner molecule in a 2D quantum dot
    Akman, N
    Tomak, M
    PHYSICA E, 1999, 4 (04): : 277 - 285
  • [7] Toward Engineering 2D Atomic Arrays in Solids
    Kling, Trevor
    An, Haechan
    Hosseini, Mahdi
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [8] Thermomechanical control of electronic coupling in quantum dot solids
    Zhang, Jianhong
    Lutich, Andrey A.
    Susha, Andrei S.
    Doeblinger, Markus
    Mauser, Christian
    Govorov, Alexander O.
    Rogach, Andrey L.
    Jaeckel, Frank
    Feldmann, Jochen
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
  • [9] Highly Tunable 2D Silicon Quantum Dot Array with Coupling beyond Nearest Neighbors
    Wang, Ning
    Kang, Jia-Min
    Lu, Wen-Long
    Wang, Shao-Min
    Wang, You-Jia
    Li, Hai-Ou
    Cao, Gang
    Wang, Bao-Chuan
    Guo, Guo-Ping
    NANO LETTERS, 2024, 24 (42) : 13126 - 13133
  • [10] Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications
    Chistyakov, A. A.
    Zvaigzne, M. A.
    Nikitenko, V. R.
    Tameev, A. R.
    Martynov, I. L.
    Prezhdo, O. V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (17): : 4129 - 4139