Isomorphism Classes and Automorphisms of Locally Complex Algebras

被引:0
|
作者
Smirnov A.S. [1 ]
机构
[1] Lomonosov Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Automorphism Group; Matrix Equation; Isomorphism Class; Orthogonal Matrix; Arbitrary Dimension;
D O I
10.1007/s10958-014-1874-3
中图分类号
学科分类号
摘要
Locally complex algebras, introduced by M. Bresar, P. Šemrl, and Š. Špenko, provide a generalization of Cayley-Dickson algebras to the case of arbitrary dimensions. The paper considers the isomorphic classes of locally complex algebras and their automorphism groups. As a characterization of the isomorphism classes, a system of specific matrix equations is used. This system allows one to derive a few necessary conditions for locally complex algebras to be isomorphic. Also classifications of locally complex algebras of dimension three and of their automorphism groups are presented. Bibliography: 5 titles. © 2014 Springer Science+Business Media New York.
引用
收藏
页码:463 / 472
页数:9
相关论文
共 50 条
  • [41] LOCALLY EQUATIONAL CLASSES OF UNIVERSAL ALGEBRAS - PRELIMINARY REPORT
    HU, TK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 631 - &
  • [42] Isomorphism rigidity of commuting automorphisms
    Bhattacharya, Siddhartha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (12) : 6319 - 6329
  • [43] Automorphisms on complex simple Lie algebras of order 3
    Hsin, Ching-, I
    KUWAIT JOURNAL OF SCIENCE, 2022, 49 (02)
  • [44] Algebraic determination of isomorphism classes of the moduli algebras of ${\tilde E}_6$ singularities
    Hao Chen
    Craig Seeley
    Stephen S.-T. Yau
    Mathematische Annalen, 2000, 318 : 637 - 666
  • [45] ISOMORPHISM CLASSES AND INVARIANTS FOR A SUBCLASS OF NINE-DIMENSIONAL FILIFORM LEIBNIZ ALGEBRAS
    Deraman, F.
    Rakhimov, I. S.
    Husain, S. K. Said
    5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 326 - 331
  • [46] Picture invariants and the isomorphism problem for complex semisimple Lie algebras
    Kodiyalam, V
    Raghavan, KN
    Commutative Algebra and Algebraic Geometry, 2005, 390 : 127 - 136
  • [47] A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras
    Huang, SZ
    STUDIA MATHEMATICA, 1999, 132 (01) : 37 - 69
  • [48] Local automorphisms of complex solvable Lie algebras of maximal rank
    Kudaybergenov, Karimbergen
    Kurbanbaev, Tuuelbay
    Omirov, Bakhrom
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (13): : 2197 - 2220
  • [49] On the isomorphism classes of transversals
    Jain, V. K.
    Shukla, R. P.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (05) : 1717 - 1725
  • [50] ON CONNECTEDNESS OF ISOMORPHISM CLASSES
    MCGUIGAN, RA
    MANUSCRIPTA MATHEMATICA, 1970, 3 (01) : 1 - &