Isomorphism rigidity of commuting automorphisms

被引:0
|
作者
Bhattacharya, Siddhartha [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
rigidity; commuting automorphisms; entropy;
D O I
10.1090/S0002-9947-08-04597-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d > 1, and let (X, alpha) and (Y, beta) be two zero-entropy Z(d)-actions on compact abelian groups by d commuting automorphisms. We show that if all lower rank subactions of alpha and beta have completely positive entropy, then any measurable equivariant map from X to Y is an affine map. In particular, two such actions are measurably conjugate if and only if they are algebraically conjugate.
引用
收藏
页码:6319 / 6329
页数:11
相关论文
共 50 条
  • [1] Rigidity properties for commuting automorphisms on tori and solenoids
    Einsiedler, Manfred
    Lindenstrauss, Elon
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 691 - 736
  • [2] COMMUTING AUTOMORPHISMS
    WATATANI, Y
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 449 - 449
  • [3] On commuting automorphisms of groups
    Deaconescu, M
    Silberberg, G
    Walls, GL
    ARCHIV DER MATHEMATIK, 2002, 79 (06) : 423 - 429
  • [4] ON COMMUTING AUTOMORPHISMS ON RINGS
    LUH, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 115 - &
  • [5] On commuting automorphisms of groups
    Deaconescu M.
    Silberberg G.
    Walls G.L.
    Archiv der Mathematik, 2002, 79 (6) : 423 - 429
  • [6] A NOTE ON COMMUTING AUTOMORPHISMS OF RINGS
    LUH, J
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (01): : 61 - &
  • [7] COBOUNDARIES OF COMMUTING BOREL AUTOMORPHISMS
    Sanadhya, Shrey
    OPUSCULA MATHEMATICA, 2021, 41 (05) : 667 - 683
  • [8] On commuting automorphisms of some groups
    Azimi Shahrabi, Nazila
    Akhavan Malayeri, Mehri
    RICERCHE DI MATEMATICA, 2025, 74 (01) : 419 - 430
  • [9] COMMUTING AUTOMORPHISMS AND EQUILIBRIUM STATES
    NARNHOFER, H
    ACTA PHYSICA AUSTRIACA, 1977, 47 (1-2): : 1 - 29
  • [10] Automorphisms of a",3 Commuting with a a",+-Action
    Stampfli, Immanuel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (19) : 9832 - 9856