Extending MDS Codes

被引:0
|
作者
T. L. Alderson
机构
[1] University of New Brunswick,Department of Mathematical Sciences
来源
Annals of Combinatorics | 2005年 / 9卷
关键词
94B25; 51E21; 05B15; MDS code; Latin hypercube; code extension;
D O I
暂无
中图分类号
学科分类号
摘要
A q-ary (n, k)-MDS code, linear or not, satisfies n ≤ q + k − 1. A code meeting this bound is said to have maximum length. Using purely combinatorial methods we show that an MDS code with n = q + k − 2 can be uniquely extended to a maximum length code if and only if q is even. This result is best possible in the sense that there is, for example, a non-extendable 4-ary (5, 4)-MDS code. It may be that the proof of our result is as interesting as the result itself. We provide a simple necessary and sufficient condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{\text{property }}\mathcal{P}} \right)$$\end{document} for code extendability. In future work, this condition might be suitably modified to give an extendability condition for arbitrary (shorter) MDS codes.
引用
收藏
页码:125 / 135
页数:10
相关论文
共 50 条
  • [1] Extending MDS codes
    Alderson, T. L.
    ANNALS OF COMBINATORICS, 2005, 9 (02) : 125 - 135
  • [2] Construction of MDS twisted Reed–Solomon codes and LCD MDS codes
    Hongwei Liu
    Shengwei Liu
    Designs, Codes and Cryptography, 2021, 89 : 2051 - 2065
  • [3] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    IEEE ACCESS, 2021, 9 : 137970 - 137990
  • [4] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    Nguyen, Bac T. (nguyentrongbac@duytan.edu.vn), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 137970 - 137990
  • [5] On the Classification of MDS Codes
    Kokkala, Janne I.
    Krotov, Denis S.
    Ostergard, Patric R. J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) : 6485 - 6492
  • [6] ON MDS ELLIPTIC CODES
    MUNUERA, C
    DISCRETE MATHEMATICS, 1993, 117 (1-3) : 279 - 286
  • [7] On MDS color codes
    de Albuquerque, Clarice Dias
    Vieira, Vandenberg Lopes
    Oliveira Quilles Queiroz, Catia Regina de
    La Guardia, Giuliano Gadioli
    de Oliveira, Anderson Jose
    de Lima, Leandro Bezerra
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 599
  • [8] Almost MDS codes
    Des Codes Cryptography, 2 (143):
  • [9] On quantum MDS codes
    Rötteler, M
    Grassl, M
    Beth, T
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 355 - 355
  • [10] On MDS color codes
    de Albuquerque, Clarice Dias
    Vieira, Vandenberg Lopes
    de Oliveira Quilles Queiroz, Cátia Regina
    La Guardia, Giuliano Gadioli
    de Oliveira, Anderson José
    de Lima, Leandro Bezerra
    Physica A: Statistical Mechanics and its Applications, 2022, 599