MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes

被引:0
|
作者
Dinh, Hai Q. [1 ,2 ]
Nguyen, Bac T. [3 ,4 ]
Singh, Abhay Kumar [5 ]
Yamaka, Woraphon [6 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 700000, Vietnam
[3] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[4] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[5] Indian Inst Technol ISM, Dept Appl Math, Dhanbad 826004, Bihar, India
[6] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 50200, Thailand
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Constacyclic codes; cyclic codes; hamming distance; MDScodes; singleton bound; symbolpair distance; DISTANCE SEPARABLE CODES; CYCLIC CODES; EXPLICIT REPRESENTATION; LENGTH 4P(S); ENUMERATION;
D O I
10.1109/ACCESS.2021.3117569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symbol-pair codes are used to protect against symbol-pair errors in high density data storage systems. One of the most important tasks in symbol-pair coding theory is to design MDS codes. MDS symbol-pair codes are optimal in the sense that such codes attain the Singleton bound. In this paper, a new class of MDS symbol-pair codes with code-length 5p and optimal pair distance of 7 is established. It is shown that for any prime p 1 (mod 5), we can always construct four p-ary MDS symbol-pair cyclic codes of length 5p of largest possible pair distance 7. We also completely determined all MDS symbol-pair and MDS b-symbol codes of length p(s) and 2p(s) over F-p(m) + uF(p)(m) by filling in some missing cases, and rectifying some gaps in Type 3 codes of recent papers. As an applications of our results, we use MAGMA to provide many examples of new MDS codes over Fpm and F-p(m) + uF(p)(m).
引用
收藏
页码:137970 / 137990
页数:21
相关论文
共 50 条
  • [1] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    [J]. IEEE Access, 2021, 9 : 137970 - 137990
  • [2] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [3] Application of Constacyclic Codes to Quantum MDS Codes
    Chen, Bocong
    Ling, San
    Zhang, Guanghui
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) : 1474 - 1484
  • [4] Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions
    Chen, Bocong
    Lin, Liren
    Liu, Hongwei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7661 - 7666
  • [5] New constructions of MDS symbol-pair codes
    Baokun Ding
    Gennian Ge
    Jun Zhang
    Tao Zhang
    Yiwei Zhang
    [J]. Designs, Codes and Cryptography, 2018, 86 : 841 - 859
  • [6] A Construction of New MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5828 - 5834
  • [7] New constructions of MDS symbol-pair codes
    Ding, Baokun
    Ge, Gennian
    Zhang, Jun
    Zhang, Tao
    Zhang, Yiwei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 841 - 859
  • [8] Quantum MDS codes from BCH constacyclic codes
    Hu, Liqin
    Yue, Qin
    He, Xianmang
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [9] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Shuxing Li
    Gennian Ge
    [J]. Designs, Codes and Cryptography, 2017, 84 : 359 - 372
  • [10] Constacyclic Codes and Some New Quantum MDS Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (04) : 2080 - 2086