Normal forms on contracting foliations: smoothness and homogeneous structure

被引:0
|
作者
Boris Kalinin
Victoria Sadovskaya
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Geometriae Dedicata | 2016年 / 183卷
关键词
Normal form; Contracting foliation; Narrow band spectrum; Polynomial map; Homogeneous structure; 37D30; 37D10; 34C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a diffeomorphism f of a compact manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} which contracts an invariant foliation W with smooth leaves. If the differential of f on TW has narrow band spectrum, there exist coordinates Hx:Wx→TxW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x:W_x\rightarrow T_xW$$\end{document} in which f|W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f|_W$$\end{document} has polynomial form. We present a modified approach that allows us to construct maps Hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x$$\end{document} that depend smoothly on x along the leaves of W. Moreover, we show that on each leaf they give a coherent atlas with transition maps in a finite dimensional Lie group. Our results apply, in particular, to C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-small perturbations of algebraic systems.
引用
收藏
页码:181 / 194
页数:13
相关论文
共 50 条
  • [31] Complete foliations of space forms by hypersurfaces
    A. Caminha
    P. Souza
    F. Camargo
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 339 - 353
  • [32] Complete foliations of space forms by hypersurfaces
    Caminha, A.
    Souza, P.
    Camargo, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 339 - 353
  • [33] LOGARITHMIC FORMS AND SINGULAR PROJECTIVE FOLIATIONS
    Gargiulo Acea, Javier
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) : 171 - 203
  • [34] Noncompact leaves of foliations of Morse forms
    Mel'nikova, IA
    MATHEMATICAL NOTES, 1998, 63 (5-6) : 760 - 763
  • [35] Noncompact leaves of foliations of Morse forms
    I. A. Mel'nikova
    Mathematical Notes, 1998, 63 : 760 - 763
  • [36] Closed forms transverse to singular foliations
    Janko Latschev
    manuscripta mathematica, 2006, 121 : 293 - 315
  • [37] Closed forms transverse to singular foliations
    Latschev, Janko
    MANUSCRIPTA MATHEMATICA, 2006, 121 (03) : 293 - 315
  • [38] Instability for harmonic foliations on compact homogeneous spaces
    Ichikawa, Kei
    Noda, Tomonori
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (01) : 119 - 123
  • [39] Metric foliations of homogeneous three-spheres
    Mainkar, Meera
    Schmidt, Benjamin
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 73 - 84
  • [40] Homogeneous polar foliations of complex hyperbolic spaces
    Berndt, Juergen
    Carlos Diaz-Ramos, Jose
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2012, 20 (03) : 435 - 454